Loading…

Disturbance modeling for offset-free linear model predictive control

An offset-free controller is one that drives controlled outputs to their desired targets at steady state. In the linear model predictive control (MPC) framework, offset-free control is usually achieved by adding step disturbances to the process model. The most widely-used industrial MPC implementati...

Full description

Saved in:
Bibliographic Details
Published in:Journal of process control 2002-08, Vol.12 (5), p.617-632
Main Authors: Muske, Kenneth R., Badgwell, Thomas A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An offset-free controller is one that drives controlled outputs to their desired targets at steady state. In the linear model predictive control (MPC) framework, offset-free control is usually achieved by adding step disturbances to the process model. The most widely-used industrial MPC implementations assume a constant output disturbance that can lead to sluggish rejection of disturbances that enter the process elsewhere. This paper presents a general disturbance model that accommodates unmeasured disturbances entering through the process input, state, or output. Conditions that guarantee detectability of the augmented system model are provided, and a steady-state target calculation is constructed to remove the effects of estimated disturbances. Conditions for which offset-free control is possible are stated for the combined estimator, steady-state target calculation, and dynamic controller. Simulation examples are provided to illustrate trade-offs in disturbance model design.
ISSN:0959-1524
1873-2771
DOI:10.1016/S0959-1524(01)00051-8