Loading…
Disturbance modeling for offset-free linear model predictive control
An offset-free controller is one that drives controlled outputs to their desired targets at steady state. In the linear model predictive control (MPC) framework, offset-free control is usually achieved by adding step disturbances to the process model. The most widely-used industrial MPC implementati...
Saved in:
Published in: | Journal of process control 2002-08, Vol.12 (5), p.617-632 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An offset-free controller is one that drives controlled outputs to their desired targets at steady state. In the linear model predictive control (MPC) framework, offset-free control is usually achieved by adding step disturbances to the process model. The most widely-used industrial MPC implementations assume a constant output disturbance that can lead to sluggish rejection of disturbances that enter the process elsewhere. This paper presents a general disturbance model that accommodates unmeasured disturbances entering through the process input, state, or output. Conditions that guarantee detectability of the augmented system model are provided, and a steady-state target calculation is constructed to remove the effects of estimated disturbances. Conditions for which offset-free control is possible are stated for the combined estimator, steady-state target calculation, and dynamic controller. Simulation examples are provided to illustrate trade-offs in disturbance model design. |
---|---|
ISSN: | 0959-1524 1873-2771 |
DOI: | 10.1016/S0959-1524(01)00051-8 |