Loading…
Experiment and modeling of TiB2/TiB boride layer of Ti−6Al−2Zr−1Mo−1V alloy
The influence of the boriding conditions on the boride layers was examined by boriding Ti−6Al−2Zr− 1Mo−1V alloy in the temperature range of 920−1120°C. The experimental results show that the boride layers were composed of a continuous thin outer layer of TiB2 and a thick inner layer of TiB with whis...
Saved in:
Published in: | Transactions of Nonferrous Metals Society of China 2021-12, Vol.31 (12), p.3752-3761 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The influence of the boriding conditions on the boride layers was examined by boriding Ti−6Al−2Zr− 1Mo−1V alloy in the temperature range of 920−1120°C. The experimental results show that the boride layers were composed of a continuous thin outer layer of TiB2 and a thick inner layer of TiB with whiskers or needle-like morphologies that extended into the substrate. Thick and compact boride layers were obtained when the boriding temperatures were 1000−1080 °C, and the treatment time exceeded 8 h. The boride layer depth increased with the boriding temperature and time, and the growth kinetics of the boride layers was characterized by a parabolic curve. The growth kinetics of the boride layers, including both TiB2 and TiB layers, were predicted by establishing a diffusion model, which presented satisfactory consistency with the experimental data. As a result, the activation energies of boron in the TiB2 and TiB layers were estimated to be 223.1 and 246.9 kJ/mol, respectively. |
---|---|
ISSN: | 1003-6326 |
DOI: | 10.1016/S1003-6326(21)65761-8 |