Loading…
Enhancing mechanical properties and degradation performance of Mg−0.8wt.%Ca alloy by directional solidification
The mechanical properties and degradation performance in Hank's solution of the directionally solidified (DSed) Mg−0.8Ca (wt.%) alloys were investigated and compared with those of the as-cast alloy. The microstructure was studied by OM, SEM, TEM, and EBSD. It is found that the columnar grains i...
Saved in:
Published in: | Transactions of Nonferrous Metals Society of China 2023-02, Vol.33 (2), p.409-421 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mechanical properties and degradation performance in Hank's solution of the directionally solidified (DSed) Mg−0.8Ca (wt.%) alloys were investigated and compared with those of the as-cast alloy. The microstructure was studied by OM, SEM, TEM, and EBSD. It is found that the columnar grains in DSed alloys have a consistent growth orientation of . The mechanical strength and ductility of Mg−0.8Ca alloy are significantly improved after directional solidification. Besides, the corrosion resistance of Mg−0.8Ca alloy in Hank's solution is dramatically enhanced after directional solidification. The Mg−0.8Ca alloys in Hank's solution mainly undergo microgalvanic corrosion, and the corrosion products consist of Mg(OH)2, (Ca, Mg)3(PO4)2, and hydroxyapatite (HA). The superior properties of the DSed Mg−Ca alloy are beneficial from the columnar microstructure and the redistribution of the eutectics. The DSed Mg−0.8Ca alloy with columnar dendritic structure is expected to be used as biodegradable materials. |
---|---|
ISSN: | 1003-6326 |
DOI: | 10.1016/S1003-6326(22)66116-8 |