Loading…
Influence of Cohesive Zone Shape on Solid Flow in COREX Melter Gasifier by Discrete Element Method
Based on the principle of discrete element method (DEM), a 2D slot model of a COREX melter gasifier was established to analyze the influence of cohesive zone shape on solid flow, including mass distribution, velocity distribution, normal force distribution and porosity distribution at a microscopic...
Saved in:
Published in: | Journal of iron and steel research, international international, 2015-04, Vol.22 (4), p.304-310 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on the principle of discrete element method (DEM), a 2D slot model of a COREX melter gasifier was established to analyze the influence of cohesive zone shape on solid flow, including mass distribution, velocity distribution, normal force distribution and porosity distribution at a microscopic level. The results show that the cohesive zone shape almost does not affect the particle movement in the upper shaft and deadman shape. The particles in the lower central bottom experience large normal force to support the particles above them, while particles around the raceway and in the fast flow zone exhibit weak force network. The porosity distribution was also examined under three kinds of cohesive zones. Like the velocity distribution, the whole packed bed can be divided into four main regions. With the increase of cohesive zone position, the low porosity region located in the root of cohesive zone increases. And the porosity distribution becomes asymmetric in the case of biased cohesive zone. |
---|---|
ISSN: | 1006-706X 2210-3988 |
DOI: | 10.1016/S1006-706X(15)30004-2 |