Loading…
Evidence for Continent-Continent Collision Zone in the South Indian Shield Region
With a view towards understanding the evolutionary history of the complex South Indian shield, several geological and geophysical studies have been carried out. Recent geophysical studies include magnetotelluric (MT), deep seismic sounding (DSS), gravity, magnetic and deep resistivity soundings (DRS...
Saved in:
Published in: | Gondwana research 2003-10, Vol.6 (4), p.902-911 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With a view towards understanding the evolutionary history of the complex South Indian shield, several geological and geophysical studies have been carried out. Recent geophysical studies include magnetotelluric (MT), deep seismic sounding (DSS), gravity, magnetic and deep resistivity soundings (DRS). In the present study, MT results along 140 km Andiyur-Turaiyur east-west profile is presented. The data are subjected to Groom-Bailey decomposition and static shift correction before deriving a 2-D model. The 2-D modeling results have shown that the upper crust (up to about 15 km) towards western part of the profile have exhibited high resistive character of about 40, 000 ohm-m as compared to the eastern part (less than 5, 000 ohm-m). The mid-lower crust has shown a decrease in resistivity in western part of the profile, the order of resistivity being 2, 000 ohm-m. An anomalous steep conductive feature (less than 100 ohm-m) is observed near Sankari at mid-lower crustal depths (>20 km) towards middle part of the profile. This feature is spatially correlatable with the well-known Moyar-Bhavani Shear Zone (MBSZ). The features obtained in the present study are consistent with earlier MT studies in this region and correlatable with other geophysical studies. DSS studies near the study region gave an evidence for differing crustal structure on either side of MBSZ. Variation in geoelectric character along the profile both in the upper crust and mid-lower crust indicate a block structure in the SGT with shear zones acting as boundaries. The new evidence in the form of distinct geoelectric structure and also variation in seismic structure indicate a continent-continent collision zone in this region and plays an important role for the Gondwana reconstruction models of South Indian shield. |
---|---|
ISSN: | 1342-937X 1878-0571 |
DOI: | 10.1016/S1342-937X(05)71034-0 |