Loading…

Use of methylumbeliferyl-derivative substrates for lipase activity characterization

Lipases and esterases have been recognized as very useful biocatalysts because of their wide-ranging versatility in industrial applications, their stability, low cost, and non-requirement for added cofactors. The physical properties of lipidic substrates, typically water insoluble, have determined a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular catalysis. B, Enzymatic Enzymatic, 2003-07, Vol.22 (5), p.339-346
Main Authors: Prim, Núria, Sánchez, Marta, Ruiz, Cristian, Javier Pastor, F.I, Diaz, Pilar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lipases and esterases have been recognized as very useful biocatalysts because of their wide-ranging versatility in industrial applications, their stability, low cost, and non-requirement for added cofactors. The physical properties of lipidic substrates, typically water insoluble, have determined a great difficulty in studying lipolytic enzymes. A method for fast and simple detection of lipolytic activity, based on the use of 4-methylumbelliferone (MUF)-derivative substrates was developed. The system has been used for the detection of lipase activity either from microbial colonies, cell culture suspensions, or from proteins separated on SDS-polyacrylamide or isoelectric focusing gels. The use of MUF-derivative substrates has also been extended to the quantitative determination of lipolytic activity from a variety of assays including optimum pH and temperature determination, growth dependency, kinetics or stability studies, or residual activity quantification after treatment with potential inhibitors. The method has shown to be a useful tool for the characterization of a variety of lipases from microbial origin, including those cloned in heterologous hosts.
ISSN:1381-1177
1873-3158
DOI:10.1016/S1381-1177(03)00048-1