Loading…
Capillary hollow fiber nanofiltration membranes
Spiral-wound modules generally have high packing densities, low costs, but require extensive feedwater pretreatment and have a high fouling potential. Tubular membrane modules have beneficial fouling properties, can be backflushed, but have low packing densities and are expensive. Both module types...
Saved in:
Published in: | Separation and purification technology 2001-03, Vol.22 (1-3), p.499-506 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spiral-wound modules generally have high packing densities, low costs, but require extensive feedwater pretreatment and have a high fouling potential. Tubular membrane modules have beneficial fouling properties, can be backflushed, but have low packing densities and are expensive. Both module types exist for the nanofiltration process. However, the membrane module type combining the superior properties of both types, namely capillary hollow fiber membrane modules, have not been developed yet. This paper presents the flux and retention performance data of new developed nanofiltration capillary hollow fiber membrane modules. The new modules show retention performances comparable with those of best-performing spiral-wound modules. They can typically be applied for water softening and decoloring. Continuous experiments on surface water and nanofiltration whey permeate demonstrate that the fouling behavior of the new capillary modules is indeed better than the spiral-wound modules due to its well-defined feed channel geometry. |
---|---|
ISSN: | 1383-5866 1873-3794 |
DOI: | 10.1016/S1383-5866(00)00171-4 |