Loading…

Lipid translocation across the plasma membrane of mammalian cells

The plasma membrane, which forms the physical barrier between the intra- and extracellular milieu, plays a pivotal role in the communication of cells with their environment. Exchanging metabolites, transferring signals and providing a platform for the assembly of multi-protein complexes are a few of...

Full description

Saved in:
Bibliographic Details
Published in:BBA - Molecular and Cell Biology of Lipids 1999-08, Vol.1439 (3), p.317-330
Main Authors: Bevers, Edouard M, Comfurius, Paul, Dekkers, David W.C, Zwaal, Robert F.A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The plasma membrane, which forms the physical barrier between the intra- and extracellular milieu, plays a pivotal role in the communication of cells with their environment. Exchanging metabolites, transferring signals and providing a platform for the assembly of multi-protein complexes are a few of the major functions of the plasma membrane, each of which requires participation of specific membrane proteins and/or lipids. It is therefore not surprising that the two leaflets of the membrane bilayer each have their specific lipid composition. Although membrane lipid asymmetry has been known for many years, the mechanisms for maintaining or regulating the transbilayer lipid distribution are still not completely understood. Three major players have been presented over the past years: (1) an inward-directed pump specific for phosphatidylserine and phosphatidylethanolamine, known as aminophospholipid translocase; (2) an outward-directed pump referred to as ‘floppase’ with little selectivity for the polar headgroup of the phospholipid, but whose actual participation in transport of endogenous lipids has not been well established; and (3) a lipid scramblase, which facilitates bi-directional migration across the bilayer of all phospholipid classes, independent of the polar headgroup. Whereas a concerted action of aminophospholipid translocase and floppase could, in principle, account for the maintenance of lipid asymmetry in quiescent cells, activation of the scramblase and concomitant inhibition of the aminophospholipid translocase causes a collapse of lipid asymmetry, manifested by exposure of phosphatidylserine on the cell surface. In this article, each of these transporters will be discussed, and their physiological importance will be illustrated by the Scott syndrome, a bleeding disorder caused by impaired lipid scrambling. Finally, phosphatidylserine exposure during apoptosis will be briefly discussed in relation to inhibition of translocase and simultaneous activation of scramblase.
ISSN:1388-1981
0006-3002
1879-2618
DOI:10.1016/S1388-1981(99)00110-9