Loading…

Analysis and Comparison of Two Jumping Leg Models for Bioinspired Locust Robot

Bionic jumping robot can cross the obstacles by jumping, and it has a good application prospect in the unstructured complex environment. The less Degree of Freedom (DOF) jumping leg, which has the characteristics of simple control and high rigidity, and is very important in research. Based on the ex...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bionics engineering 2016-12, Vol.13 (4), p.558-571
Main Authors: Zhang, Ziqiang, Chen, Diansheng, Chen, Kewei, Chen, Hanlong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bionic jumping robot can cross the obstacles by jumping, and it has a good application prospect in the unstructured complex environment. The less Degree of Freedom (DOF) jumping leg, which has the characteristics of simple control and high rigidity, and is very important in research. Based on the experimental observation of leg physiological structure and take-off process of locust, two 1 DOF jumping leg models, which includes four-bar jumping leg model and slider-crank jumping leg model, are established, and multi objective optimization is conducted to deduce the motion law of two 1 DOF jumping leg models and jumping leg of locust is closer. Then the jumping performance evaluation indices are proposed, which include the mechanical property, body attitude, jumping distance and environmental effect. According to these evaluation indices, the jumping performances of the two jumping leg models are analyzed and compared, and the simulation is conducted for further explanations. The analysis results show that the four-bar jumping leg has smaller structural size and its motion law is closer to the hindleg of locust. The slider-crank jumping leg has better mechanical property, stronger energy storage capacity and the rough ground has less effect on it. This study offers a quantitative analysis and comparison for different jumping leg models of bionic locust jumping robot. Furthermore, a theoretical basis for future research and engineering application is established.
ISSN:1672-6529
2543-2141
DOI:10.1016/S1672-6529(16)60328-1