Loading…

The structure of an in-situ formed titanium-boron-carbon coating on a graphite substrate

A titanium-boron-carbon coating was fabricated on a graphite substrate by heating TiB2 powder on a graphite surface above the eutectic temperature. The coating consisted of a pure graphite layer on the outer surface and a TiB2-C alloy layer inside. The graphite layer had many wrinkles due to the dif...

Full description

Saved in:
Bibliographic Details
Published in:New carbon materials 2017-10, Vol.32 (5), p.474-480
Main Authors: Yang, Jin-hua, Guo, Quan-gui, Liu, Zhan-jun, Qiu, Hai-peng, Jiao, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A titanium-boron-carbon coating was fabricated on a graphite substrate by heating TiB2 powder on a graphite surface above the eutectic temperature. The coating consisted of a pure graphite layer on the outer surface and a TiB2-C alloy layer inside. The graphite layer had many wrinkles due to the difference in the thermal expansion coefficients of TiB2 and graphite. The TiB2-C alloy layer had a continuous three-dimensional interpenetrating network microstructure. The d002 value of the graphite in the alloy layer was 0.335 6 nm, which was quite close to that of single crystal graphite (0.335 4 nm). Raman and X-ray photoelectron spectroscopy indicated that the graphite in both layers was doped substitutionally with boron atoms. A water quench thermal shock test verified a high adhesion strength between the coating and the substrate. This method is promising for the fabrication of thermal barrier coatings on carbon materials.
ISSN:1872-5805
1872-5805
DOI:10.1016/S1872-5805(17)60135-5