Loading…

A biochemical & biophysical study on in-vitro anti-glycating potential of iridin against d-Ribose modified BSA

Non-enzymatic protein glycation results in the formation of advanced glycation end products (AGEs) leads to the pathogenesis of long-term diabetic complications. Iridin (ID), an antioxidant, plays an important role in protecting against oxidative stress and could therefore be an efficacious anti-gly...

Full description

Saved in:
Bibliographic Details
Published in:Archives of biochemistry and biophysics 2020-06, Vol.686, p.108373, Article 108373
Main Authors: Nabi, Rabia, Alvi, Sahir Sultan, Shah, Mohammad Shafi, Ahmad, Saheem, Faisal, Mohammad, Alatar, Abdulrahman A., Khan, M. Salman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-enzymatic protein glycation results in the formation of advanced glycation end products (AGEs) leads to the pathogenesis of long-term diabetic complications. Iridin (ID), an antioxidant, plays an important role in protecting against oxidative stress and could therefore be an efficacious anti-glycating regimen. Herein, we assessed the anti-glycating potential of ID against d-ribose induced glycation of bovine serum albumin (BSA) by various biophysical and biochemical techniques. Our results from several physicochemical assays advocated that ID was able to evidently prevent the AGEs generation via reducing hyperchromicity, early glycation products (EGPs), carbonyl content (CC), hydroxymethyl furfural (HMF) content, production of fluorescent AGEs, protection against loss of secondary structure (i.e. α-helix and β-sheets) of proteins, increasing the free lysine and free arginine content, reduced binding of congo red (CR), and reduced thioflavin T (ThT) and 8-aninilo-1-napthalene sulphonate (ANS)-specific fuorescence in glycated-BSA (Gly-BSA). On the basis of these findings, we concluded that ID possesses the significant anti-glycation potential and may be established as a remarkable anti-AGEs therapeutic agent. Further in-vivo and clinical studies are still warranted to uncover the therapeutic effects of ID against age-related as well as metabolic diseases.
ISSN:0003-9861
1096-0384
DOI:10.1016/j.abb.2020.108373