Loading…

Morphology optimization and assessment of the performance limits of high-porosity nanostructured polymer monolithic capillary columns for proteomics analysis

This study targets the synthesis of high external-porosity poly(styrene-co-divinylbenzene) monolithic support structures with macropore and globule sizes in the sub-micron range, aiming at the realization of high-speed and high-resolution gradient separations of intact proteins and peptides. The the...

Full description

Saved in:
Bibliographic Details
Published in:Analytica chimica acta 2020-08, Vol.1124, p.176-183
Main Authors: Dores-Sousa, José Luís, Terryn, Herman, Eeltink, Sebastiaan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study targets the synthesis of high external-porosity poly(styrene-co-divinylbenzene) monolithic support structures with macropore and globule sizes in the sub-micron range, aiming at the realization of high-speed and high-resolution gradient separations of intact proteins and peptides. The thermodynamic and kinetic aspects of the free-radical polymerization synthesis were adjusted by tuning the porogen to monomer ratio, the porogen ratio, the initiator content, and polymerization temperature. Next, column morphology was linked to eddy-dispersion and mobile-phase mass-transfer contributions and the chromatographic performance limits were benchmarked against conventional packed columns and silica monoliths. Polymer monolithic structures yielding a separation impedance as low as 976 were created allowing to generate N > 1,000,000 (for an unretained marker), albeit the expense of very long analysis times. Decreasing the macropore and globule sizes below a certain threshold led to significant increase in eddy dispersion, as globular entities agglomerate, and a small number of large flow-through pores permeate the overall fine interconnected polymer network with small diameter flow-through pores. The potential of monolith chromatography for proteomics application is demonstrated with a ballistic 6 s gradient separation of intact proteins and a high-resolution nanoLC-Orbitrap mass spectrometric analysis of a tryptic E. coli digest applying a coupled-column system. [Display omitted] •High-porosity polymer monoliths for bio-separations in gradient mode were developed.•Monoliths with Hmin = 8.7 μm and separation impedance (E) 
ISSN:0003-2670
1873-4324
DOI:10.1016/j.aca.2020.05.019