Loading…
Selected mode for rapidly growing needle-like dendrite controlled by heat and mass transport
The boundary integral method is developed for fast anisotropic interfaces. A general integro-differential equation for curved interfaces controlled by heat and mass transport is derived and applied to the problem of rapid dendritic growth. A selection criterion for the steady-state mode of growing p...
Saved in:
Published in: | Acta materialia 2017-09, Vol.137, p.64-70 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The boundary integral method is developed for fast anisotropic interfaces. A general integro-differential equation for curved interfaces controlled by heat and mass transport is derived and applied to the problem of rapid dendritic growth. A selection criterion for the steady-state mode of growing parabolic interfaces is obtained and, in common solution with the undercooling balance, it is compared with experimental data on rapid dendritic solidification of deeply supercooled liquid droplets. In this comparison, transitions from solute diffusion-limited to thermo-solutal regime and, finally, to pure thermally controlled regime of the anisotropic dendrite are discussed and revealed. Limiting cases of known selection criteria for anisotropic dendrites growing at small and high growth PĂ©clet numbers are provided.
[Display omitted] |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2017.07.022 |