Loading…
Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures
High-entropy alloys (HEAs) are a newly emerging class of materials that show attractive mechanical properties for structural applications. Particularly, face-centered cubic (fcc) structured HEAs and medium-entropy alloys (MEAs) such as FeMnCoNiCr and CoNiCr alloys, respectively, which exhibit superi...
Saved in:
Published in: | Acta materialia 2018-12, Vol.161, p.388-399 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High-entropy alloys (HEAs) are a newly emerging class of materials that show attractive mechanical properties for structural applications. Particularly, face-centered cubic (fcc) structured HEAs and medium-entropy alloys (MEAs) such as FeMnCoNiCr and CoNiCr alloys, respectively, which exhibit superior fracture toughness and tensile properties at liquid nitrogen temperature, are the potential HEA materials available for cryogenic applications. Here, we report a ferrous Fe60Co15Ni15Cr10 (at%) MEA exhibiting combination of cryogenic tensile strength of ∼1.5 GPa and ductility of ∼87% due to the multiple-stage strain hardening. Astonishingly, detailed microstructural observations at each stage reveal the sequential operation of deformation-induced phase transformation from parent fcc to newly formed bcc (body-centered cubic) phases. No compositional heterogeneity is observed at phase boundaries, indicating diffusionless phase transformation, as confirmed by atom probe tomography. The transformation to bcc phase occurs predominantly along grain boundaries (GBs) at the early stage of plastic deformation. Simultaneously, numerous deformation-induced shear bands (SBs) having stacking faults associated to the Shockley partial dislocations and thin hcp plates, form within fcc grains. Further deformation leads to the intense nucleation and growth of the bcc phase at the intersections of SBs within fcc grains. These micro-processes consecutively enhance the strain hardening rate, which play a key role in the multiple strain hardening behavior. The in-situ neutron diffraction studies make it clear that the martensite formation and the concurrent load partitioning between the fcc and bcc phases play an important role in the increase in strength. Furthermore, replacing high-cost alloying elements cobalt and nickel with iron, as well as introduction of metastability-engineering at liquid nitrogen temperature, distinguishes the new ferrous MEAs from previously reported equiatomic HEAs. This result underlines insights to provide expanded opportunities for the future development of HEAs for cryogenic applications.
[Display omitted] |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2018.09.057 |