Loading…

Temperature-dependent mechanisms of dislocation–twin boundary interactions in Ni-based equiatomic alloys

The high entropy alloy FeNiCoCrMn and its subsets have exhibited an unusual combination of strength and ductility dependance on temperature, showing a significant increase in ductility as temperature decreases. This phenomenon is intriguing, and the underlying mechanism is critical for understanding...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2021-06, Vol.211, p.116886, Article 116886
Main Authors: Hayakawa, Sho, Xu, Haixuan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-3bcb21f72bb5af7f286d2720189c1075f379cae42c1bdaae519ee4332d1534553
cites cdi_FETCH-LOGICAL-c422t-3bcb21f72bb5af7f286d2720189c1075f379cae42c1bdaae519ee4332d1534553
container_end_page
container_issue
container_start_page 116886
container_title Acta materialia
container_volume 211
creator Hayakawa, Sho
Xu, Haixuan
description The high entropy alloy FeNiCoCrMn and its subsets have exhibited an unusual combination of strength and ductility dependance on temperature, showing a significant increase in ductility as temperature decreases. This phenomenon is intriguing, and the underlying mechanism is critical for understanding the mechanical properties of these materials. Here, we investigate the interaction between a screw dislocation and a coherent twin boundary in Ni-based equiatomic alloys using atomistic simulations. We find that the dominant mechanism for this interaction changes as a function of temperature, which could be one of the underlying causes of the enhanced ductility at cryogenic temperatures in these alloys. Further investigations reveal the interaction's temperature dependence arises from a critical parameter related to the stacking fault energy and the distance between the Shockley partial dislocations. The insights extracted herein contribute to a fundamental understanding of plastic deformation in Ni-based equiatomic alloys and can be utilized for developing design strategies to achieve superior strength and ductility in structural materials. [Display omitted]
doi_str_mv 10.1016/j.actamat.2021.116886
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_actamat_2021_116886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645421002664</els_id><sourcerecordid>S1359645421002664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-3bcb21f72bb5af7f286d2720189c1075f379cae42c1bdaae519ee4332d1534553</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhi0EEqVwBCRfIMHPJF0hVPGSKtiUteXYE-EosYvtgrrjDtyQk5Cq3bOaGY2-X78-hK4pKSmh1U1fapP1qHPJCKMlpVXTVCdoRpuaF0xIfjrtXC6KSkhxji5S6gmhrBZkhvo1jBuIOm8jFBY24C34jEcw79q7NCYcOmxdGoLR2QX_-_2Tv5zHbdh6q-MOO58n3Ox_aTrwiytancBi-Ng6ncPoDNbDEHbpEp11ekhwdZxz9PZwv14-FavXx-fl3aowgrFc8Na0jHY1a1upu7pjTWVZzQhtFoaSWna8XhgNghnaWq1B0gWA4JxZKrmQks-RPOSaGFKK0KlNdOPUVVGi9sJUr47C1F6YOgibuNsDB1O5TwdRJePAG7AugsnKBvdPwh-uUXq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Temperature-dependent mechanisms of dislocation–twin boundary interactions in Ni-based equiatomic alloys</title><source>ScienceDirect Freedom Collection</source><creator>Hayakawa, Sho ; Xu, Haixuan</creator><creatorcontrib>Hayakawa, Sho ; Xu, Haixuan</creatorcontrib><description>The high entropy alloy FeNiCoCrMn and its subsets have exhibited an unusual combination of strength and ductility dependance on temperature, showing a significant increase in ductility as temperature decreases. This phenomenon is intriguing, and the underlying mechanism is critical for understanding the mechanical properties of these materials. Here, we investigate the interaction between a screw dislocation and a coherent twin boundary in Ni-based equiatomic alloys using atomistic simulations. We find that the dominant mechanism for this interaction changes as a function of temperature, which could be one of the underlying causes of the enhanced ductility at cryogenic temperatures in these alloys. Further investigations reveal the interaction's temperature dependence arises from a critical parameter related to the stacking fault energy and the distance between the Shockley partial dislocations. The insights extracted herein contribute to a fundamental understanding of plastic deformation in Ni-based equiatomic alloys and can be utilized for developing design strategies to achieve superior strength and ductility in structural materials. [Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2021.116886</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>Acta materialia, 2021-06, Vol.211, p.116886, Article 116886</ispartof><rights>2021 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-3bcb21f72bb5af7f286d2720189c1075f379cae42c1bdaae519ee4332d1534553</citedby><cites>FETCH-LOGICAL-c422t-3bcb21f72bb5af7f286d2720189c1075f379cae42c1bdaae519ee4332d1534553</cites><orcidid>0000-0001-6460-6149 ; 0000-0001-7793-5531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hayakawa, Sho</creatorcontrib><creatorcontrib>Xu, Haixuan</creatorcontrib><title>Temperature-dependent mechanisms of dislocation–twin boundary interactions in Ni-based equiatomic alloys</title><title>Acta materialia</title><description>The high entropy alloy FeNiCoCrMn and its subsets have exhibited an unusual combination of strength and ductility dependance on temperature, showing a significant increase in ductility as temperature decreases. This phenomenon is intriguing, and the underlying mechanism is critical for understanding the mechanical properties of these materials. Here, we investigate the interaction between a screw dislocation and a coherent twin boundary in Ni-based equiatomic alloys using atomistic simulations. We find that the dominant mechanism for this interaction changes as a function of temperature, which could be one of the underlying causes of the enhanced ductility at cryogenic temperatures in these alloys. Further investigations reveal the interaction's temperature dependence arises from a critical parameter related to the stacking fault energy and the distance between the Shockley partial dislocations. The insights extracted herein contribute to a fundamental understanding of plastic deformation in Ni-based equiatomic alloys and can be utilized for developing design strategies to achieve superior strength and ductility in structural materials. [Display omitted]</description><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQhi0EEqVwBCRfIMHPJF0hVPGSKtiUteXYE-EosYvtgrrjDtyQk5Cq3bOaGY2-X78-hK4pKSmh1U1fapP1qHPJCKMlpVXTVCdoRpuaF0xIfjrtXC6KSkhxji5S6gmhrBZkhvo1jBuIOm8jFBY24C34jEcw79q7NCYcOmxdGoLR2QX_-_2Tv5zHbdh6q-MOO58n3Ox_aTrwiytancBi-Ng6ncPoDNbDEHbpEp11ekhwdZxz9PZwv14-FavXx-fl3aowgrFc8Na0jHY1a1upu7pjTWVZzQhtFoaSWna8XhgNghnaWq1B0gWA4JxZKrmQks-RPOSaGFKK0KlNdOPUVVGi9sJUr47C1F6YOgibuNsDB1O5TwdRJePAG7AugsnKBvdPwh-uUXq8</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Hayakawa, Sho</creator><creator>Xu, Haixuan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6460-6149</orcidid><orcidid>https://orcid.org/0000-0001-7793-5531</orcidid></search><sort><creationdate>20210601</creationdate><title>Temperature-dependent mechanisms of dislocation–twin boundary interactions in Ni-based equiatomic alloys</title><author>Hayakawa, Sho ; Xu, Haixuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-3bcb21f72bb5af7f286d2720189c1075f379cae42c1bdaae519ee4332d1534553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayakawa, Sho</creatorcontrib><creatorcontrib>Xu, Haixuan</creatorcontrib><collection>CrossRef</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayakawa, Sho</au><au>Xu, Haixuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-dependent mechanisms of dislocation–twin boundary interactions in Ni-based equiatomic alloys</atitle><jtitle>Acta materialia</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>211</volume><spage>116886</spage><pages>116886-</pages><artnum>116886</artnum><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The high entropy alloy FeNiCoCrMn and its subsets have exhibited an unusual combination of strength and ductility dependance on temperature, showing a significant increase in ductility as temperature decreases. This phenomenon is intriguing, and the underlying mechanism is critical for understanding the mechanical properties of these materials. Here, we investigate the interaction between a screw dislocation and a coherent twin boundary in Ni-based equiatomic alloys using atomistic simulations. We find that the dominant mechanism for this interaction changes as a function of temperature, which could be one of the underlying causes of the enhanced ductility at cryogenic temperatures in these alloys. Further investigations reveal the interaction's temperature dependence arises from a critical parameter related to the stacking fault energy and the distance between the Shockley partial dislocations. The insights extracted herein contribute to a fundamental understanding of plastic deformation in Ni-based equiatomic alloys and can be utilized for developing design strategies to achieve superior strength and ductility in structural materials. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2021.116886</doi><orcidid>https://orcid.org/0000-0001-6460-6149</orcidid><orcidid>https://orcid.org/0000-0001-7793-5531</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2021-06, Vol.211, p.116886, Article 116886
issn 1359-6454
1873-2453
language eng
recordid cdi_crossref_primary_10_1016_j_actamat_2021_116886
source ScienceDirect Freedom Collection
title Temperature-dependent mechanisms of dislocation–twin boundary interactions in Ni-based equiatomic alloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-dependent%20mechanisms%20of%20dislocation%E2%80%93twin%20boundary%20interactions%20in%20Ni-based%20equiatomic%20alloys&rft.jtitle=Acta%20materialia&rft.au=Hayakawa,%20Sho&rft.date=2021-06-01&rft.volume=211&rft.spage=116886&rft.pages=116886-&rft.artnum=116886&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2021.116886&rft_dat=%3Celsevier_cross%3ES1359645421002664%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-3bcb21f72bb5af7f286d2720189c1075f379cae42c1bdaae519ee4332d1534553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true