Loading…

Deformation dynamics of a neutron-irradiated aluminum alloy: An in situ synchrotron tomography study

[Display omitted] To reveal the effects of long-term neutron irradiation on the mechanical behavior of nuclear materials, in situ quasi-static uniaxial tensile tests are conducted on an LT21 aluminum (Al) alloy from a decommissioned research reactor. Scanning/Transmission electron microscopy (SEM/TE...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2023-01, Vol.243, p.118493, Article 118493
Main Authors: Chai, H.W., Fan, D., Yuan, J.C., Hu, L., Xie, H.L., Du, G.H., Feng, Q.J., Zhou, W., Huang, J.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c309t-d9c4e78cba04cc162f9db9c7a6736b461151975bfc824c1428f2e4913b14764c3
cites cdi_FETCH-LOGICAL-c309t-d9c4e78cba04cc162f9db9c7a6736b461151975bfc824c1428f2e4913b14764c3
container_end_page
container_issue
container_start_page 118493
container_title Acta materialia
container_volume 243
creator Chai, H.W.
Fan, D.
Yuan, J.C.
Hu, L.
Xie, H.L.
Du, G.H.
Feng, Q.J.
Zhou, W.
Huang, J.Y.
description [Display omitted] To reveal the effects of long-term neutron irradiation on the mechanical behavior of nuclear materials, in situ quasi-static uniaxial tensile tests are conducted on an LT21 aluminum (Al) alloy from a decommissioned research reactor. Scanning/Transmission electron microscopy (SEM/TEM), and micro CT are first applied to characterize the microstructures of LT21 Al alloys aged naturally and neutron-irradiated for 30 years. In situ synchrotron micro computed tomography (CT) is adopted to characterize the deformation and damage dynamics of this LT21 Al. A new particle tracking analysis technique is proposed to quantify the displacement/strain fields and microstructural evolution (e.g., particle movement and pore growth) in the irradiated sample. Long-term irradiation induces considerable microstructural changes in the LT21 Al alloy, including the precipitation/aggregation of micron-sized Si particles and nanoscale Mg2Si particles. In addition, the size of pores and particles in the irradiated material appear considerably larger than that in the unirradiated material. During tension, the alloy undergoes elastic-plastic deformation followed by shear-dominated necking failure. The porosity and pore size exhibits an overall increase with increasing loading. Formation of new pores occurs in two modes, formation at the particle-matrix interfaces and random formation across the sample. For mode one, pores tend to nucleate at the top and bottom ends of a particle (relative to the loading direction). Formation of new pores and growth of initial and newly-nucleated pores occur simultaneously and contributes approximately equally to damage accumulation in the irradiated LT21 Al alloy before necking occurs. The deformation dynamics deepens our understanding of the aging of nuclear materials.
doi_str_mv 10.1016/j.actamat.2022.118493
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_actamat_2022_118493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645422008709</els_id><sourcerecordid>S1359645422008709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-d9c4e78cba04cc162f9db9c7a6736b461151975bfc824c1428f2e4913b14764c3</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRbVooenjEwr6AbsaWX6omxLSJwS6addCHsmNQiwFSS7475uQ7Luau5hzuRxC7oGVwKB52JYasx51LjnjvATohKwuyAKqWhaNqMUVuU5pyxjwVrAFMc92CPHw74KnZvZ6dJhoGKim3k45Bl-4GLVxOltD9W4anZ_GQ9iF-ZEuPXWeJpcnmmaPmxiOBM1hDD9R7zczTXky8y25HPQu2bvzvSHfry9fq_di_fn2sVquC6yYzIWRKGzbYa-ZQISGD9L0ElvdtFXTiwagBtnW_YAdFwiCdwO3QkLVg2gbgdUNqU-9GENK0Q5qH92o46yAqaMetVVnPeqoR530HLinE2cP436djSqhsx6tcdFiVia4fxr-AKwMdO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deformation dynamics of a neutron-irradiated aluminum alloy: An in situ synchrotron tomography study</title><source>ScienceDirect Freedom Collection</source><creator>Chai, H.W. ; Fan, D. ; Yuan, J.C. ; Hu, L. ; Xie, H.L. ; Du, G.H. ; Feng, Q.J. ; Zhou, W. ; Huang, J.Y.</creator><creatorcontrib>Chai, H.W. ; Fan, D. ; Yuan, J.C. ; Hu, L. ; Xie, H.L. ; Du, G.H. ; Feng, Q.J. ; Zhou, W. ; Huang, J.Y.</creatorcontrib><description>[Display omitted] To reveal the effects of long-term neutron irradiation on the mechanical behavior of nuclear materials, in situ quasi-static uniaxial tensile tests are conducted on an LT21 aluminum (Al) alloy from a decommissioned research reactor. Scanning/Transmission electron microscopy (SEM/TEM), and micro CT are first applied to characterize the microstructures of LT21 Al alloys aged naturally and neutron-irradiated for 30 years. In situ synchrotron micro computed tomography (CT) is adopted to characterize the deformation and damage dynamics of this LT21 Al. A new particle tracking analysis technique is proposed to quantify the displacement/strain fields and microstructural evolution (e.g., particle movement and pore growth) in the irradiated sample. Long-term irradiation induces considerable microstructural changes in the LT21 Al alloy, including the precipitation/aggregation of micron-sized Si particles and nanoscale Mg2Si particles. In addition, the size of pores and particles in the irradiated material appear considerably larger than that in the unirradiated material. During tension, the alloy undergoes elastic-plastic deformation followed by shear-dominated necking failure. The porosity and pore size exhibits an overall increase with increasing loading. Formation of new pores occurs in two modes, formation at the particle-matrix interfaces and random formation across the sample. For mode one, pores tend to nucleate at the top and bottom ends of a particle (relative to the loading direction). Formation of new pores and growth of initial and newly-nucleated pores occur simultaneously and contributes approximately equally to damage accumulation in the irradiated LT21 Al alloy before necking occurs. The deformation dynamics deepens our understanding of the aging of nuclear materials.</description><identifier>ISSN: 1359-6454</identifier><identifier>DOI: 10.1016/j.actamat.2022.118493</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aluminum alloys ; In situ computed tomography ; Neutron irradiation ; pore formation and growth</subject><ispartof>Acta materialia, 2023-01, Vol.243, p.118493, Article 118493</ispartof><rights>2022 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-d9c4e78cba04cc162f9db9c7a6736b461151975bfc824c1428f2e4913b14764c3</citedby><cites>FETCH-LOGICAL-c309t-d9c4e78cba04cc162f9db9c7a6736b461151975bfc824c1428f2e4913b14764c3</cites><orcidid>0000-0003-3784-1156 ; 0000-0003-0448-042X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chai, H.W.</creatorcontrib><creatorcontrib>Fan, D.</creatorcontrib><creatorcontrib>Yuan, J.C.</creatorcontrib><creatorcontrib>Hu, L.</creatorcontrib><creatorcontrib>Xie, H.L.</creatorcontrib><creatorcontrib>Du, G.H.</creatorcontrib><creatorcontrib>Feng, Q.J.</creatorcontrib><creatorcontrib>Zhou, W.</creatorcontrib><creatorcontrib>Huang, J.Y.</creatorcontrib><title>Deformation dynamics of a neutron-irradiated aluminum alloy: An in situ synchrotron tomography study</title><title>Acta materialia</title><description>[Display omitted] To reveal the effects of long-term neutron irradiation on the mechanical behavior of nuclear materials, in situ quasi-static uniaxial tensile tests are conducted on an LT21 aluminum (Al) alloy from a decommissioned research reactor. Scanning/Transmission electron microscopy (SEM/TEM), and micro CT are first applied to characterize the microstructures of LT21 Al alloys aged naturally and neutron-irradiated for 30 years. In situ synchrotron micro computed tomography (CT) is adopted to characterize the deformation and damage dynamics of this LT21 Al. A new particle tracking analysis technique is proposed to quantify the displacement/strain fields and microstructural evolution (e.g., particle movement and pore growth) in the irradiated sample. Long-term irradiation induces considerable microstructural changes in the LT21 Al alloy, including the precipitation/aggregation of micron-sized Si particles and nanoscale Mg2Si particles. In addition, the size of pores and particles in the irradiated material appear considerably larger than that in the unirradiated material. During tension, the alloy undergoes elastic-plastic deformation followed by shear-dominated necking failure. The porosity and pore size exhibits an overall increase with increasing loading. Formation of new pores occurs in two modes, formation at the particle-matrix interfaces and random formation across the sample. For mode one, pores tend to nucleate at the top and bottom ends of a particle (relative to the loading direction). Formation of new pores and growth of initial and newly-nucleated pores occur simultaneously and contributes approximately equally to damage accumulation in the irradiated LT21 Al alloy before necking occurs. The deformation dynamics deepens our understanding of the aging of nuclear materials.</description><subject>Aluminum alloys</subject><subject>In situ computed tomography</subject><subject>Neutron irradiation</subject><subject>pore formation and growth</subject><issn>1359-6454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRbVooenjEwr6AbsaWX6omxLSJwS6addCHsmNQiwFSS7475uQ7Luau5hzuRxC7oGVwKB52JYasx51LjnjvATohKwuyAKqWhaNqMUVuU5pyxjwVrAFMc92CPHw74KnZvZ6dJhoGKim3k45Bl-4GLVxOltD9W4anZ_GQ9iF-ZEuPXWeJpcnmmaPmxiOBM1hDD9R7zczTXky8y25HPQu2bvzvSHfry9fq_di_fn2sVquC6yYzIWRKGzbYa-ZQISGD9L0ElvdtFXTiwagBtnW_YAdFwiCdwO3QkLVg2gbgdUNqU-9GENK0Q5qH92o46yAqaMetVVnPeqoR530HLinE2cP436djSqhsx6tcdFiVia4fxr-AKwMdO4</recordid><startdate>20230115</startdate><enddate>20230115</enddate><creator>Chai, H.W.</creator><creator>Fan, D.</creator><creator>Yuan, J.C.</creator><creator>Hu, L.</creator><creator>Xie, H.L.</creator><creator>Du, G.H.</creator><creator>Feng, Q.J.</creator><creator>Zhou, W.</creator><creator>Huang, J.Y.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3784-1156</orcidid><orcidid>https://orcid.org/0000-0003-0448-042X</orcidid></search><sort><creationdate>20230115</creationdate><title>Deformation dynamics of a neutron-irradiated aluminum alloy: An in situ synchrotron tomography study</title><author>Chai, H.W. ; Fan, D. ; Yuan, J.C. ; Hu, L. ; Xie, H.L. ; Du, G.H. ; Feng, Q.J. ; Zhou, W. ; Huang, J.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-d9c4e78cba04cc162f9db9c7a6736b461151975bfc824c1428f2e4913b14764c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum alloys</topic><topic>In situ computed tomography</topic><topic>Neutron irradiation</topic><topic>pore formation and growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chai, H.W.</creatorcontrib><creatorcontrib>Fan, D.</creatorcontrib><creatorcontrib>Yuan, J.C.</creatorcontrib><creatorcontrib>Hu, L.</creatorcontrib><creatorcontrib>Xie, H.L.</creatorcontrib><creatorcontrib>Du, G.H.</creatorcontrib><creatorcontrib>Feng, Q.J.</creatorcontrib><creatorcontrib>Zhou, W.</creatorcontrib><creatorcontrib>Huang, J.Y.</creatorcontrib><collection>CrossRef</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chai, H.W.</au><au>Fan, D.</au><au>Yuan, J.C.</au><au>Hu, L.</au><au>Xie, H.L.</au><au>Du, G.H.</au><au>Feng, Q.J.</au><au>Zhou, W.</au><au>Huang, J.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation dynamics of a neutron-irradiated aluminum alloy: An in situ synchrotron tomography study</atitle><jtitle>Acta materialia</jtitle><date>2023-01-15</date><risdate>2023</risdate><volume>243</volume><spage>118493</spage><pages>118493-</pages><artnum>118493</artnum><issn>1359-6454</issn><abstract>[Display omitted] To reveal the effects of long-term neutron irradiation on the mechanical behavior of nuclear materials, in situ quasi-static uniaxial tensile tests are conducted on an LT21 aluminum (Al) alloy from a decommissioned research reactor. Scanning/Transmission electron microscopy (SEM/TEM), and micro CT are first applied to characterize the microstructures of LT21 Al alloys aged naturally and neutron-irradiated for 30 years. In situ synchrotron micro computed tomography (CT) is adopted to characterize the deformation and damage dynamics of this LT21 Al. A new particle tracking analysis technique is proposed to quantify the displacement/strain fields and microstructural evolution (e.g., particle movement and pore growth) in the irradiated sample. Long-term irradiation induces considerable microstructural changes in the LT21 Al alloy, including the precipitation/aggregation of micron-sized Si particles and nanoscale Mg2Si particles. In addition, the size of pores and particles in the irradiated material appear considerably larger than that in the unirradiated material. During tension, the alloy undergoes elastic-plastic deformation followed by shear-dominated necking failure. The porosity and pore size exhibits an overall increase with increasing loading. Formation of new pores occurs in two modes, formation at the particle-matrix interfaces and random formation across the sample. For mode one, pores tend to nucleate at the top and bottom ends of a particle (relative to the loading direction). Formation of new pores and growth of initial and newly-nucleated pores occur simultaneously and contributes approximately equally to damage accumulation in the irradiated LT21 Al alloy before necking occurs. The deformation dynamics deepens our understanding of the aging of nuclear materials.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2022.118493</doi><orcidid>https://orcid.org/0000-0003-3784-1156</orcidid><orcidid>https://orcid.org/0000-0003-0448-042X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2023-01, Vol.243, p.118493, Article 118493
issn 1359-6454
language eng
recordid cdi_crossref_primary_10_1016_j_actamat_2022_118493
source ScienceDirect Freedom Collection
subjects Aluminum alloys
In situ computed tomography
Neutron irradiation
pore formation and growth
title Deformation dynamics of a neutron-irradiated aluminum alloy: An in situ synchrotron tomography study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20dynamics%20of%20a%20neutron-irradiated%20aluminum%20alloy:%20An%20in%20situ%20synchrotron%20tomography%20study&rft.jtitle=Acta%20materialia&rft.au=Chai,%20H.W.&rft.date=2023-01-15&rft.volume=243&rft.spage=118493&rft.pages=118493-&rft.artnum=118493&rft.issn=1359-6454&rft_id=info:doi/10.1016/j.actamat.2022.118493&rft_dat=%3Celsevier_cross%3ES1359645422008709%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-d9c4e78cba04cc162f9db9c7a6736b461151975bfc824c1428f2e4913b14764c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true