Loading…

Predicting thermoelectric figure of merit in complex materials: What do we need to know?

In a complex nanostructured material or composite, the thermoelectric figure of merit, ZT(T), is strongly dependent on the morphology and transport properties of interfacial areas that connect individual crystal grains or composite constituent phases. Despite the active efforts to improve ZT(T), rel...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2024-06, Vol.271, p.119889, Article 119889
Main Authors: Basaula, Dharma Raj, Daeipour, Mohamad, Feygelson, Boris, Nakhmanson, Serge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c257t-2d9af0163ff683752db033f9f6188d6cbb5180bd1bed2a056456c3fd0b39f0c3
container_end_page
container_issue
container_start_page 119889
container_title Acta materialia
container_volume 271
creator Basaula, Dharma Raj
Daeipour, Mohamad
Feygelson, Boris
Nakhmanson, Serge
description In a complex nanostructured material or composite, the thermoelectric figure of merit, ZT(T), is strongly dependent on the morphology and transport properties of interfacial areas that connect individual crystal grains or composite constituent phases. Despite the active efforts to improve ZT(T), relatively few experimental and theoretical investigations have been focused on probing the interfacial transport properties of relevant materials. We developed a finite element method based mesoscale-level simulation approach to evaluate the effective values of thermal and electrical conductivities, and Seebeck coefficient in structurally complex materials. This approach was tested on three popular nanocrystalline thermoelectric systems: n-type Si, n-type Si0.80Ge0.20, and p-type BiSbTe, providing excellent agreement between the simulated and previously measured values of ZT(T). The interfacial thermoelectric properties of these material systems were quantified in the process and compared to simple models. Furthermore, the sensitivity of ZT(T) to changes in the system morphology was elucidated as well. [Display omitted]
doi_str_mv 10.1016/j.actamat.2024.119889
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_actamat_2024_119889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645424002428</els_id><sourcerecordid>S1359645424002428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-2d9af0163ff683752db033f9f6188d6cbb5180bd1bed2a056456c3fd0b39f0c3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhbNQsFZ_gpA_MGMek3m4KVJ8QUEXBd2FTHLTZpyZlEy0-u9NafeuLhzuOZzzIXRDSU4JLW-7XOmoBhVzRliRU9rUdXOGZpSLJisLUVygy2nqCKGsKsgMfbwFME5HN25w3EIYPPSgY3AaW7f5CoC9xQMEF7EbsfbDrocfnPKTpPrpDr9vVcTG4z3gEcDg6PHn6PeLK3Ru0wNcn-4crR8f1svnbPX69LK8X2WaiSpmzDTKpuLc2rLmlWCmJZzbxpa0rk2p21bQmrSGtmCYIiJNKDW3hrS8sUTzORLHWB38NAWwchfcoMKvpEQeiMhOnojIAxF5JJJ8i6MPUrdvB0FO2sGoE4yQ9kvj3T8Jfz-Mb6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting thermoelectric figure of merit in complex materials: What do we need to know?</title><source>Elsevier</source><creator>Basaula, Dharma Raj ; Daeipour, Mohamad ; Feygelson, Boris ; Nakhmanson, Serge</creator><creatorcontrib>Basaula, Dharma Raj ; Daeipour, Mohamad ; Feygelson, Boris ; Nakhmanson, Serge</creatorcontrib><description>In a complex nanostructured material or composite, the thermoelectric figure of merit, ZT(T), is strongly dependent on the morphology and transport properties of interfacial areas that connect individual crystal grains or composite constituent phases. Despite the active efforts to improve ZT(T), relatively few experimental and theoretical investigations have been focused on probing the interfacial transport properties of relevant materials. We developed a finite element method based mesoscale-level simulation approach to evaluate the effective values of thermal and electrical conductivities, and Seebeck coefficient in structurally complex materials. This approach was tested on three popular nanocrystalline thermoelectric systems: n-type Si, n-type Si0.80Ge0.20, and p-type BiSbTe, providing excellent agreement between the simulated and previously measured values of ZT(T). The interfacial thermoelectric properties of these material systems were quantified in the process and compared to simple models. Furthermore, the sensitivity of ZT(T) to changes in the system morphology was elucidated as well. [Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>DOI: 10.1016/j.actamat.2024.119889</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Finite element modeling ; Mesoscale ; Polycrystalline ; Theory ; Thermoelectric</subject><ispartof>Acta materialia, 2024-06, Vol.271, p.119889, Article 119889</ispartof><rights>2024 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-2d9af0163ff683752db033f9f6188d6cbb5180bd1bed2a056456c3fd0b39f0c3</cites><orcidid>0000-0001-6678-8441 ; 0000-0001-9030-3475 ; 0000-0002-0539-5828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Basaula, Dharma Raj</creatorcontrib><creatorcontrib>Daeipour, Mohamad</creatorcontrib><creatorcontrib>Feygelson, Boris</creatorcontrib><creatorcontrib>Nakhmanson, Serge</creatorcontrib><title>Predicting thermoelectric figure of merit in complex materials: What do we need to know?</title><title>Acta materialia</title><description>In a complex nanostructured material or composite, the thermoelectric figure of merit, ZT(T), is strongly dependent on the morphology and transport properties of interfacial areas that connect individual crystal grains or composite constituent phases. Despite the active efforts to improve ZT(T), relatively few experimental and theoretical investigations have been focused on probing the interfacial transport properties of relevant materials. We developed a finite element method based mesoscale-level simulation approach to evaluate the effective values of thermal and electrical conductivities, and Seebeck coefficient in structurally complex materials. This approach was tested on three popular nanocrystalline thermoelectric systems: n-type Si, n-type Si0.80Ge0.20, and p-type BiSbTe, providing excellent agreement between the simulated and previously measured values of ZT(T). The interfacial thermoelectric properties of these material systems were quantified in the process and compared to simple models. Furthermore, the sensitivity of ZT(T) to changes in the system morphology was elucidated as well. [Display omitted]</description><subject>Finite element modeling</subject><subject>Mesoscale</subject><subject>Polycrystalline</subject><subject>Theory</subject><subject>Thermoelectric</subject><issn>1359-6454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhbNQsFZ_gpA_MGMek3m4KVJ8QUEXBd2FTHLTZpyZlEy0-u9NafeuLhzuOZzzIXRDSU4JLW-7XOmoBhVzRliRU9rUdXOGZpSLJisLUVygy2nqCKGsKsgMfbwFME5HN25w3EIYPPSgY3AaW7f5CoC9xQMEF7EbsfbDrocfnPKTpPrpDr9vVcTG4z3gEcDg6PHn6PeLK3Ru0wNcn-4crR8f1svnbPX69LK8X2WaiSpmzDTKpuLc2rLmlWCmJZzbxpa0rk2p21bQmrSGtmCYIiJNKDW3hrS8sUTzORLHWB38NAWwchfcoMKvpEQeiMhOnojIAxF5JJJ8i6MPUrdvB0FO2sGoE4yQ9kvj3T8Jfz-Mb6c</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Basaula, Dharma Raj</creator><creator>Daeipour, Mohamad</creator><creator>Feygelson, Boris</creator><creator>Nakhmanson, Serge</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6678-8441</orcidid><orcidid>https://orcid.org/0000-0001-9030-3475</orcidid><orcidid>https://orcid.org/0000-0002-0539-5828</orcidid></search><sort><creationdate>20240601</creationdate><title>Predicting thermoelectric figure of merit in complex materials: What do we need to know?</title><author>Basaula, Dharma Raj ; Daeipour, Mohamad ; Feygelson, Boris ; Nakhmanson, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-2d9af0163ff683752db033f9f6188d6cbb5180bd1bed2a056456c3fd0b39f0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Finite element modeling</topic><topic>Mesoscale</topic><topic>Polycrystalline</topic><topic>Theory</topic><topic>Thermoelectric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basaula, Dharma Raj</creatorcontrib><creatorcontrib>Daeipour, Mohamad</creatorcontrib><creatorcontrib>Feygelson, Boris</creatorcontrib><creatorcontrib>Nakhmanson, Serge</creatorcontrib><collection>CrossRef</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basaula, Dharma Raj</au><au>Daeipour, Mohamad</au><au>Feygelson, Boris</au><au>Nakhmanson, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting thermoelectric figure of merit in complex materials: What do we need to know?</atitle><jtitle>Acta materialia</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>271</volume><spage>119889</spage><pages>119889-</pages><artnum>119889</artnum><issn>1359-6454</issn><abstract>In a complex nanostructured material or composite, the thermoelectric figure of merit, ZT(T), is strongly dependent on the morphology and transport properties of interfacial areas that connect individual crystal grains or composite constituent phases. Despite the active efforts to improve ZT(T), relatively few experimental and theoretical investigations have been focused on probing the interfacial transport properties of relevant materials. We developed a finite element method based mesoscale-level simulation approach to evaluate the effective values of thermal and electrical conductivities, and Seebeck coefficient in structurally complex materials. This approach was tested on three popular nanocrystalline thermoelectric systems: n-type Si, n-type Si0.80Ge0.20, and p-type BiSbTe, providing excellent agreement between the simulated and previously measured values of ZT(T). The interfacial thermoelectric properties of these material systems were quantified in the process and compared to simple models. Furthermore, the sensitivity of ZT(T) to changes in the system morphology was elucidated as well. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2024.119889</doi><orcidid>https://orcid.org/0000-0001-6678-8441</orcidid><orcidid>https://orcid.org/0000-0001-9030-3475</orcidid><orcidid>https://orcid.org/0000-0002-0539-5828</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2024-06, Vol.271, p.119889, Article 119889
issn 1359-6454
language eng
recordid cdi_crossref_primary_10_1016_j_actamat_2024_119889
source Elsevier
subjects Finite element modeling
Mesoscale
Polycrystalline
Theory
Thermoelectric
title Predicting thermoelectric figure of merit in complex materials: What do we need to know?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20thermoelectric%20figure%20of%20merit%20in%20complex%20materials:%20What%20do%20we%20need%20to%20know?&rft.jtitle=Acta%20materialia&rft.au=Basaula,%20Dharma%20Raj&rft.date=2024-06-01&rft.volume=271&rft.spage=119889&rft.pages=119889-&rft.artnum=119889&rft.issn=1359-6454&rft_id=info:doi/10.1016/j.actamat.2024.119889&rft_dat=%3Celsevier_cross%3ES1359645424002428%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-2d9af0163ff683752db033f9f6188d6cbb5180bd1bed2a056456c3fd0b39f0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true