Loading…

PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery

[Display omitted] Poly(amidoamine) dendrimers (PAMAM) are well-defined, highly branched, nanoscale macromolecules with numerous active amine groups on the surface. PAMAM dendrimer can enhance the solubility of hydrophobic drugs, and with numerous reactive groups on the surface PAMAM dendrimer can be...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2016-10, Vol.43, p.14-29
Main Authors: Luong, Duy, Kesharwani, Prashant, Deshmukh, Rahul, Mohd Amin, Mohd Cairul Iqbal, Gupta, Umesh, Greish, Khaled, Iyer, Arun K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Poly(amidoamine) dendrimers (PAMAM) are well-defined, highly branched, nanoscale macromolecules with numerous active amine groups on the surface. PAMAM dendrimer can enhance the solubility of hydrophobic drugs, and with numerous reactive groups on the surface PAMAM dendrimer can be engineered with various functional groups for specific targeting ability. However, in physiological conditions, these amine groups are toxic to cells and limit the application of PAMAM. In the recent years, polyethylene glycol (PEG) conjugation has been the most widely used approach to reduce the toxicity of the active group on dendrimer surface. PEG molecules are known to be inert, non-immunogenic, and non-antigenic with a significant water solubility. PEGylated PAMAM-mediated delivery could not only overcome the limitations of dendrimer such as drug leakage, immunogenicity, hemolytic toxicity, systemic cytotoxicity but they also have the ability to enhance the solubilization of hydrophobic drugs and facilitates the potential for DNA transfection, siRNA delivery and tumor targeting. This review focuses on the recent developments on the application and influence of PEGylation on various biopharmaceutical properties of PAMAM dendrimers. It is well established that dendrimers have demonstrated promising potentials for drug delivery. However, the inherent toxicity poses challenges for its clinical translation. In this regard, PEGylation has helped mitigate some of the toxicity concerns of dendrimers and have paved the way forward for testing its translational potentials. The review is a collection of articles demonstrating the utility of PEGylation of the most studied PAMAM dendrimers. To our knowledge, this is a first such attempt to draw reader’s attention, specifically, towards PEGylated PAMAM dendrimers.
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2016.07.015