Loading…

Modelling curved-layered printing paths for fabricating large-scale construction components

In this paper, a non-conventional way of additive manufacturing, curved-layered printing, has been applied to large-scale construction process. Despite the number of research works on Curved Layered Fused Deposition Modelling (CLFDM) over the last decade, few practical applications have been reporte...

Full description

Saved in:
Bibliographic Details
Published in:Additive manufacturing 2016-10, Vol.12, p.216-230
Main Authors: Lim, Sungwoo, Buswell, Richard A., Valentine, Philip J., Piker, Daniel, Austin, Simon A., De Kestelier, Xavier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a non-conventional way of additive manufacturing, curved-layered printing, has been applied to large-scale construction process. Despite the number of research works on Curved Layered Fused Deposition Modelling (CLFDM) over the last decade, few practical applications have been reported. An alternative method adopting the CLFDM principle, that generates a curved-layered printing path, was developed using a single scripting environment called Grasshopper – a plugin of Rhinoceros®. The method was evaluated with the 3D Concrete Printing process developed at Loughborough University. The evaluation of the method including the results of simulation and printing revealed three principal benefits compared with existing flat-layered printing paths, which are particularly beneficial to large-scale AM techniques: (i) better surface quality, (ii) shorter printing time and (iii) higher surface strengths.
ISSN:2214-8604
2214-7810
DOI:10.1016/j.addma.2016.06.004