Loading…
Mechanical characterization and constitutive modeling of visco-hyperelasticity of photocured polymers
In this work, we study the nonlinear behavior of soft photocured polymers typically used in 3D-printing. We perform experimental testing of 3D-printed samples cured at various controlled light intensities. The experimental data show the dependency of the material elasticity and rate-sensitivity on t...
Saved in:
Published in: | Additive manufacturing 2020-12, Vol.36, p.101511, Article 101511 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we study the nonlinear behavior of soft photocured polymers typically used in 3D-printing. We perform experimental testing of 3D-printed samples cured at various controlled light intensities. The experimental data show the dependency of the material elasticity and rate-sensitivity on the curing light intensity. To elucidate these relations, we develop a physically-based visco-hyperelastic model in the continuum thermodynamics framework. In our model, the macroscopic viscoelastic behavior is bridged to the microscopic molecular chain scale. This approach allows us to express the material constants in terms of polymer chain physical parameters. We consider different physical mechanisms governing hyperelasticity and rate-dependent behaviors. The hyperelastic behavior is dictated by the crosslinked network; whereas, the viscous part originates in the free and dangling chains. Based on our experimental data, we illustrate the ability of the new constitutive model to accurately describe the influence of the light intensity on photocured polymer viscoelasticity. |
---|---|
ISSN: | 2214-8604 2214-7810 |
DOI: | 10.1016/j.addma.2020.101511 |