Loading…

Magnetic-assisted 3D printing of strain rate-dependent material with biomimetic embedded intelligence

Embedded intelligence is commonly observed in plant systems, where specialized organs are capable of spontaneously perceiving external mechanical stimuli and exhibiting adaptive responses without the nerves or a central brain control. However, this embedded delicate structural design underneath the...

Full description

Saved in:
Bibliographic Details
Published in:Additive manufacturing 2024-09, Vol.96, p.104555, Article 104555
Main Authors: Li, Jianyang, Li, Bingqian, Ren, Lei, Liu, Qingping, Ren, Luquan, Liu, Changyi, Wang, Kunyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Embedded intelligence is commonly observed in plant systems, where specialized organs are capable of spontaneously perceiving external mechanical stimuli and exhibiting adaptive responses without the nerves or a central brain control. However, this embedded delicate structural design underneath the intelligence poses significant challenges to traditional manufacturing methods. Here we propose a bioinspired strain rate-dependent material with embedded intelligence by utilization of the self-developed magnetic-assisted 3D printing. The locally customized composition and anisotropy within the viscoelastic matrix are realized by aligning the fibers with the magnetic field. We investigated the influencing factors of viscoelasticity of the composite, and elucidated the underlying mechanisms through theoretical analysis, computer simulations and physical experiments. The strain rate-dependent material is then applied in metastructures with switchable Poisson's ratios and logic gate control. Our work sheds light on the development of future intelligent biomimetic materials, which have the potential to advance the next generation of smart devices.
ISSN:2214-8604
DOI:10.1016/j.addma.2024.104555