Loading…

Novel crosslinking methods to design hydrogels

Hydrogels are presently under investigation as matrices for the controlled release of bioactive molecules, in particular pharmaceutical proteins, and for the encapsulation of living cells. For these applications, it is often required that the gels degrade under physiological conditions. This means t...

Full description

Saved in:
Bibliographic Details
Published in:Advanced drug delivery reviews 2012-12, Vol.64, p.223-236
Main Authors: Hennink, W.E., van Nostrum, C.F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrogels are presently under investigation as matrices for the controlled release of bioactive molecules, in particular pharmaceutical proteins, and for the encapsulation of living cells. For these applications, it is often required that the gels degrade under physiological conditions. This means that the originally three-dimensional structure has to disintegrate preferably in harmless products to ensure a good biocompatibility of the hydrogel. In this overview, different chemical and physical crosslinking methods used for the design of biodegradable hydrogels are summarized and discussed. Chemical crosslinking is a highly versatile method to create hydrogels with good mechanical stability. However, the crosslinking agents used are often toxic compounds, which have been extracted from the gels before they can be applied. Moreover, crosslinking agents can give unwanted reactions with the bioactive substances present in the hydrogel matrix. Such adverse effects are avoided with the use of physically crosslinked gels.
ISSN:0169-409X
1872-8294
DOI:10.1016/j.addr.2012.09.009