Loading…

Nonlinear behavior of RC beams strengthened with strain hardening cementitious composites subjected to monotonic and cyclic loads

Ultra High Performance Strain Hardening Cementitious Composites (UHP-SHCC) are useful for strengthening or repairing concrete members. However there is a need to use refined analytical tools to simulate response of strengthened system. In this study, ABAQUS finite element program is used to numerica...

Full description

Saved in:
Bibliographic Details
Published in:Alexandria engineering journal 2016-06, Vol.55 (2), p.1483-1496
Main Authors: Khalil, Abd El-Hakim, Etman, Emad, Atta, Ahmed, Essam, Mohamed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultra High Performance Strain Hardening Cementitious Composites (UHP-SHCC) are useful for strengthening or repairing concrete members. However there is a need to use refined analytical tools to simulate response of strengthened system. In this study, ABAQUS finite element program is used to numerically perform a parametric study including two major groups. Each group contains nine specimens strengthened from the tension side with variable thickness of UHP-SHCC and reinforced with variable reinforcement ratios embedded in the strengthening layer. Two types of loading were applied: monotonic loading for the first group and cyclic loading for the second group. ABAQUS CPS4R mesh element nonlinear is used to model the concrete, while truss element nonlinear is used to model longitudinal and transverse steel reinforcement. The numerical results obtained are in good agreement with the experimental work found in the literature. The results from the parametric study showed that it is sufficient to use 1.2% additional reinforcement ratio embedded in the strengthening layer for beams strengthened with UHP-SHCC to eliminate the observed early strain localization and to gain adequate ductility under both static and cyclic loadings.
ISSN:1110-0168
DOI:10.1016/j.aej.2016.01.032