Loading…

Gradient-oriented directional predictor for HEVC planar and angular intra prediction modes to enhance lossless compression

Recent advancements in the capture and display technologies motivated the ITU-T Video Coding Experts Group and ISO/IEC Moving Picture Experts Group to jointly develop the High-Efficiency Video Coding (HEVC), a state-of-the-art video coding standard for efficient compression. The compression applicat...

Full description

Saved in:
Bibliographic Details
Published in:International journal of electronics and communications 2018-10, Vol.95, p.73-81
Main Authors: Shilpa Kamath, S., Aparna, P., Antony, Abhilash
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent advancements in the capture and display technologies motivated the ITU-T Video Coding Experts Group and ISO/IEC Moving Picture Experts Group to jointly develop the High-Efficiency Video Coding (HEVC), a state-of-the-art video coding standard for efficient compression. The compression applications that essentially require lossless compression scenarios include medical imaging, video analytics, video surveillance, video streaming etc., where the content reconstruction should be flawless. In the proposed work, we present a gradient-oriented directional prediction (GDP) strategy at the pixel level to enhance the compression efficiency of the conventional block-based planar and angular intra prediction in the HEVC lossless mode. The detailed experimental analysis demonstrates that the proposed method outperforms the lossless mode of HEVC anchor in terms of bit-rate savings by 8.29%, 1.65%, 1.94% and 2.21% for Main-AI, LD, LDP and RA configurations respectively, without impairing the computational complexity. The experimental results also illustrates that the proposed predictor performs superior to the existing state-of-the-art techniques in the literature.
ISSN:1434-8411
1618-0399
DOI:10.1016/j.aeue.2018.07.037