Loading…

The stable category and invertible modules for infinite groups

We construct a well-behaved stable category of modules for a large class of infinite groups. We then consider its Picard group, which is the group of invertible (or endotrivial) modules. We show how this group can be calculated when the group acts on a tree with finite stabilisers.

Saved in:
Bibliographic Details
Published in:Advances in mathematics (New York. 1965) 2019-12, Vol.358, p.106853, Article 106853
Main Authors: Mazza, Nadia, Symonds, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-b7ad8b4eb86dcfb4ea1597151578c3ee56621a95838125b0441b3a50e04230f53
cites cdi_FETCH-LOGICAL-c340t-b7ad8b4eb86dcfb4ea1597151578c3ee56621a95838125b0441b3a50e04230f53
container_end_page
container_issue
container_start_page 106853
container_title Advances in mathematics (New York. 1965)
container_volume 358
creator Mazza, Nadia
Symonds, Peter
description We construct a well-behaved stable category of modules for a large class of infinite groups. We then consider its Picard group, which is the group of invertible (or endotrivial) modules. We show how this group can be calculated when the group acts on a tree with finite stabilisers.
doi_str_mv 10.1016/j.aim.2019.106853
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_aim_2019_106853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870819304694</els_id><sourcerecordid>S0001870819304694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-b7ad8b4eb86dcfb4ea1597151578c3ee56621a95838125b0441b3a50e04230f53</originalsourceid><addsrcrecordid>eNp9kN1KxDAQRoMoWFcfwLu-QOtM07QpgiCLrsKCN-t1SNPpmtKfJeku7NubpV57NfN9cIbhMPaIkCJg8dSl2g5pBliFXEjBr1iEUEGSgcyuWQQAmMgS5C27874LscqxitjL7odiP-u6p9jomfaTO8d6bGI7nsjN9tIPU3Psycft5ELd2tHOFO_ddDz4e3bT6t7Tw99cse_3t936I9l-bT7Xr9vE8BzmpC51I-ucalk0pg2LRlGVKFCU0nAiURQZ6kpILjETNeQ51lwLIMgzDq3gK4bLXeMm7x216uDsoN1ZIaiLANWpIEBdBKhFQGCeF4bCYydLTnljaTTUWEdmVs1k_6F_AQiCYr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The stable category and invertible modules for infinite groups</title><source>Elsevier</source><creator>Mazza, Nadia ; Symonds, Peter</creator><creatorcontrib>Mazza, Nadia ; Symonds, Peter</creatorcontrib><description>We construct a well-behaved stable category of modules for a large class of infinite groups. We then consider its Picard group, which is the group of invertible (or endotrivial) modules. We show how this group can be calculated when the group acts on a tree with finite stabilisers.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1016/j.aim.2019.106853</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Endotrivial module ; Invertible module ; Stable category</subject><ispartof>Advances in mathematics (New York. 1965), 2019-12, Vol.358, p.106853, Article 106853</ispartof><rights>2019 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-b7ad8b4eb86dcfb4ea1597151578c3ee56621a95838125b0441b3a50e04230f53</citedby><cites>FETCH-LOGICAL-c340t-b7ad8b4eb86dcfb4ea1597151578c3ee56621a95838125b0441b3a50e04230f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mazza, Nadia</creatorcontrib><creatorcontrib>Symonds, Peter</creatorcontrib><title>The stable category and invertible modules for infinite groups</title><title>Advances in mathematics (New York. 1965)</title><description>We construct a well-behaved stable category of modules for a large class of infinite groups. We then consider its Picard group, which is the group of invertible (or endotrivial) modules. We show how this group can be calculated when the group acts on a tree with finite stabilisers.</description><subject>Endotrivial module</subject><subject>Invertible module</subject><subject>Stable category</subject><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KxDAQRoMoWFcfwLu-QOtM07QpgiCLrsKCN-t1SNPpmtKfJeku7NubpV57NfN9cIbhMPaIkCJg8dSl2g5pBliFXEjBr1iEUEGSgcyuWQQAmMgS5C27874LscqxitjL7odiP-u6p9jomfaTO8d6bGI7nsjN9tIPU3Psycft5ELd2tHOFO_ddDz4e3bT6t7Tw99cse_3t936I9l-bT7Xr9vE8BzmpC51I-ucalk0pg2LRlGVKFCU0nAiURQZ6kpILjETNeQ51lwLIMgzDq3gK4bLXeMm7x216uDsoN1ZIaiLANWpIEBdBKhFQGCeF4bCYydLTnljaTTUWEdmVs1k_6F_AQiCYr8</recordid><startdate>20191215</startdate><enddate>20191215</enddate><creator>Mazza, Nadia</creator><creator>Symonds, Peter</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191215</creationdate><title>The stable category and invertible modules for infinite groups</title><author>Mazza, Nadia ; Symonds, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-b7ad8b4eb86dcfb4ea1597151578c3ee56621a95838125b0441b3a50e04230f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Endotrivial module</topic><topic>Invertible module</topic><topic>Stable category</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazza, Nadia</creatorcontrib><creatorcontrib>Symonds, Peter</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazza, Nadia</au><au>Symonds, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stable category and invertible modules for infinite groups</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2019-12-15</date><risdate>2019</risdate><volume>358</volume><spage>106853</spage><pages>106853-</pages><artnum>106853</artnum><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>We construct a well-behaved stable category of modules for a large class of infinite groups. We then consider its Picard group, which is the group of invertible (or endotrivial) modules. We show how this group can be calculated when the group acts on a tree with finite stabilisers.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.aim.2019.106853</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8708
ispartof Advances in mathematics (New York. 1965), 2019-12, Vol.358, p.106853, Article 106853
issn 0001-8708
1090-2082
language eng
recordid cdi_crossref_primary_10_1016_j_aim_2019_106853
source Elsevier
subjects Endotrivial module
Invertible module
Stable category
title The stable category and invertible modules for infinite groups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stable%20category%20and%20invertible%20modules%20for%20infinite%20groups&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Mazza,%20Nadia&rft.date=2019-12-15&rft.volume=358&rft.spage=106853&rft.pages=106853-&rft.artnum=106853&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1016/j.aim.2019.106853&rft_dat=%3Celsevier_cross%3ES0001870819304694%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-b7ad8b4eb86dcfb4ea1597151578c3ee56621a95838125b0441b3a50e04230f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true