Loading…
The stable category and invertible modules for infinite groups
We construct a well-behaved stable category of modules for a large class of infinite groups. We then consider its Picard group, which is the group of invertible (or endotrivial) modules. We show how this group can be calculated when the group acts on a tree with finite stabilisers.
Saved in:
Published in: | Advances in mathematics (New York. 1965) 2019-12, Vol.358, p.106853, Article 106853 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-b7ad8b4eb86dcfb4ea1597151578c3ee56621a95838125b0441b3a50e04230f53 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-b7ad8b4eb86dcfb4ea1597151578c3ee56621a95838125b0441b3a50e04230f53 |
container_end_page | |
container_issue | |
container_start_page | 106853 |
container_title | Advances in mathematics (New York. 1965) |
container_volume | 358 |
creator | Mazza, Nadia Symonds, Peter |
description | We construct a well-behaved stable category of modules for a large class of infinite groups. We then consider its Picard group, which is the group of invertible (or endotrivial) modules. We show how this group can be calculated when the group acts on a tree with finite stabilisers. |
doi_str_mv | 10.1016/j.aim.2019.106853 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_aim_2019_106853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870819304694</els_id><sourcerecordid>S0001870819304694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-b7ad8b4eb86dcfb4ea1597151578c3ee56621a95838125b0441b3a50e04230f53</originalsourceid><addsrcrecordid>eNp9kN1KxDAQRoMoWFcfwLu-QOtM07QpgiCLrsKCN-t1SNPpmtKfJeku7NubpV57NfN9cIbhMPaIkCJg8dSl2g5pBliFXEjBr1iEUEGSgcyuWQQAmMgS5C27874LscqxitjL7odiP-u6p9jomfaTO8d6bGI7nsjN9tIPU3Psycft5ELd2tHOFO_ddDz4e3bT6t7Tw99cse_3t936I9l-bT7Xr9vE8BzmpC51I-ucalk0pg2LRlGVKFCU0nAiURQZ6kpILjETNeQ51lwLIMgzDq3gK4bLXeMm7x216uDsoN1ZIaiLANWpIEBdBKhFQGCeF4bCYydLTnljaTTUWEdmVs1k_6F_AQiCYr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The stable category and invertible modules for infinite groups</title><source>Elsevier</source><creator>Mazza, Nadia ; Symonds, Peter</creator><creatorcontrib>Mazza, Nadia ; Symonds, Peter</creatorcontrib><description>We construct a well-behaved stable category of modules for a large class of infinite groups. We then consider its Picard group, which is the group of invertible (or endotrivial) modules. We show how this group can be calculated when the group acts on a tree with finite stabilisers.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1016/j.aim.2019.106853</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Endotrivial module ; Invertible module ; Stable category</subject><ispartof>Advances in mathematics (New York. 1965), 2019-12, Vol.358, p.106853, Article 106853</ispartof><rights>2019 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-b7ad8b4eb86dcfb4ea1597151578c3ee56621a95838125b0441b3a50e04230f53</citedby><cites>FETCH-LOGICAL-c340t-b7ad8b4eb86dcfb4ea1597151578c3ee56621a95838125b0441b3a50e04230f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mazza, Nadia</creatorcontrib><creatorcontrib>Symonds, Peter</creatorcontrib><title>The stable category and invertible modules for infinite groups</title><title>Advances in mathematics (New York. 1965)</title><description>We construct a well-behaved stable category of modules for a large class of infinite groups. We then consider its Picard group, which is the group of invertible (or endotrivial) modules. We show how this group can be calculated when the group acts on a tree with finite stabilisers.</description><subject>Endotrivial module</subject><subject>Invertible module</subject><subject>Stable category</subject><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KxDAQRoMoWFcfwLu-QOtM07QpgiCLrsKCN-t1SNPpmtKfJeku7NubpV57NfN9cIbhMPaIkCJg8dSl2g5pBliFXEjBr1iEUEGSgcyuWQQAmMgS5C27874LscqxitjL7odiP-u6p9jomfaTO8d6bGI7nsjN9tIPU3Psycft5ELd2tHOFO_ddDz4e3bT6t7Tw99cse_3t936I9l-bT7Xr9vE8BzmpC51I-ucalk0pg2LRlGVKFCU0nAiURQZ6kpILjETNeQ51lwLIMgzDq3gK4bLXeMm7x216uDsoN1ZIaiLANWpIEBdBKhFQGCeF4bCYydLTnljaTTUWEdmVs1k_6F_AQiCYr8</recordid><startdate>20191215</startdate><enddate>20191215</enddate><creator>Mazza, Nadia</creator><creator>Symonds, Peter</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191215</creationdate><title>The stable category and invertible modules for infinite groups</title><author>Mazza, Nadia ; Symonds, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-b7ad8b4eb86dcfb4ea1597151578c3ee56621a95838125b0441b3a50e04230f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Endotrivial module</topic><topic>Invertible module</topic><topic>Stable category</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazza, Nadia</creatorcontrib><creatorcontrib>Symonds, Peter</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazza, Nadia</au><au>Symonds, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stable category and invertible modules for infinite groups</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2019-12-15</date><risdate>2019</risdate><volume>358</volume><spage>106853</spage><pages>106853-</pages><artnum>106853</artnum><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>We construct a well-behaved stable category of modules for a large class of infinite groups. We then consider its Picard group, which is the group of invertible (or endotrivial) modules. We show how this group can be calculated when the group acts on a tree with finite stabilisers.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.aim.2019.106853</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8708 |
ispartof | Advances in mathematics (New York. 1965), 2019-12, Vol.358, p.106853, Article 106853 |
issn | 0001-8708 1090-2082 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_aim_2019_106853 |
source | Elsevier |
subjects | Endotrivial module Invertible module Stable category |
title | The stable category and invertible modules for infinite groups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stable%20category%20and%20invertible%20modules%20for%20infinite%20groups&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Mazza,%20Nadia&rft.date=2019-12-15&rft.volume=358&rft.spage=106853&rft.pages=106853-&rft.artnum=106853&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1016/j.aim.2019.106853&rft_dat=%3Celsevier_cross%3ES0001870819304694%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-b7ad8b4eb86dcfb4ea1597151578c3ee56621a95838125b0441b3a50e04230f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |