Loading…

The structure theory of nilspaces III: Inverse limit representations and topological dynamics

This paper forms the third part of a series by the authors [12,11] concerning the structure theory of nilspaces. A nilspace is a compact space X together with closed collections of cubesCn(X)⊆X2n, n=1,2,…, satisfying some natural axioms. Our goal is to extend the structure theory of nilspaces obtain...

Full description

Saved in:
Bibliographic Details
Published in:Advances in mathematics (New York. 1965) 2020-05, Vol.365, p.107059, Article 107059
Main Authors: Gutman, Yonatan, Manners, Freddie, Varjú, Péter P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-ffec16f99f84b0d327db082d9470667a73a5d0ebf5dfd52584a7d50693291c1a3
cites cdi_FETCH-LOGICAL-c340t-ffec16f99f84b0d327db082d9470667a73a5d0ebf5dfd52584a7d50693291c1a3
container_end_page
container_issue
container_start_page 107059
container_title Advances in mathematics (New York. 1965)
container_volume 365
creator Gutman, Yonatan
Manners, Freddie
Varjú, Péter P.
description This paper forms the third part of a series by the authors [12,11] concerning the structure theory of nilspaces. A nilspace is a compact space X together with closed collections of cubesCn(X)⊆X2n, n=1,2,…, satisfying some natural axioms. Our goal is to extend the structure theory of nilspaces obtained by Antolín Camarena and Szegedy, and to provide new proofs. Our main result is that, under the technical assumption that Cn(X) is a connected space for all n, then X is isomorphic (in a strong sense) to an inverse limit of nilmanifolds. This is a direct and slight generalization of the main result of Antolín Camarena and Szegedy. We also apply our methods to obtain structure theorems in the setting of topological dynamics. Specifically, if H is a group (subject to very mild topological assumptions) and (H,X) is a minimal dynamical system, then we give a simple characterization of the maximal pronilfactor of X. This generalizes the case H=Z, which is a theorem of Host, Kra and Maass, although even in that case we give a significantly different proof.
doi_str_mv 10.1016/j.aim.2020.107059
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_aim_2020_107059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870820300852</els_id><sourcerecordid>S0001870820300852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-ffec16f99f84b0d327db082d9470667a73a5d0ebf5dfd52584a7d50693291c1a3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4C4vMPUm8xtdSdE6UHBTlxLS5MamzEyGJC307Z1S164OZ_EdDh8hjwwWDFj1tF8o1y848HOvoRRXZMZAQMah4ddkBgAsa2pobsldjPupioKJGfne7JDGFA46HQLStEMfTtRbOrgujkpjpG3bPtN2OGKISDvXu0QDjgEjDkkl54dI1WBo8qPv_I_TqqPmNKje6XhPbqzqIj785Zx8vb9tlh_Z-nPVLl_Xmc4LSJm1qFllhbBNsQWT89psp9tGFDVUVa3qXJUGcGtLY03Jy6ZQtSmhEjkXTDOVzwm77OrgYwxo5Rhcr8JJMpBnP3IvJz_y7Ede_EzMy4XB6djRYZBROxw0GhdQJ2m8-4f-BW-1bxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The structure theory of nilspaces III: Inverse limit representations and topological dynamics</title><source>ScienceDirect Freedom Collection</source><creator>Gutman, Yonatan ; Manners, Freddie ; Varjú, Péter P.</creator><creatorcontrib>Gutman, Yonatan ; Manners, Freddie ; Varjú, Péter P.</creatorcontrib><description>This paper forms the third part of a series by the authors [12,11] concerning the structure theory of nilspaces. A nilspace is a compact space X together with closed collections of cubesCn(X)⊆X2n, n=1,2,…, satisfying some natural axioms. Our goal is to extend the structure theory of nilspaces obtained by Antolín Camarena and Szegedy, and to provide new proofs. Our main result is that, under the technical assumption that Cn(X) is a connected space for all n, then X is isomorphic (in a strong sense) to an inverse limit of nilmanifolds. This is a direct and slight generalization of the main result of Antolín Camarena and Szegedy. We also apply our methods to obtain structure theorems in the setting of topological dynamics. Specifically, if H is a group (subject to very mild topological assumptions) and (H,X) is a minimal dynamical system, then we give a simple characterization of the maximal pronilfactor of X. This generalizes the case H=Z, which is a theorem of Host, Kra and Maass, although even in that case we give a significantly different proof.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1016/j.aim.2020.107059</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Lie groups ; Nilmanifold ; Nilspace ; Nilsystem ; Regionally proximal relation ; System of finite order</subject><ispartof>Advances in mathematics (New York. 1965), 2020-05, Vol.365, p.107059, Article 107059</ispartof><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-ffec16f99f84b0d327db082d9470667a73a5d0ebf5dfd52584a7d50693291c1a3</citedby><cites>FETCH-LOGICAL-c340t-ffec16f99f84b0d327db082d9470667a73a5d0ebf5dfd52584a7d50693291c1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gutman, Yonatan</creatorcontrib><creatorcontrib>Manners, Freddie</creatorcontrib><creatorcontrib>Varjú, Péter P.</creatorcontrib><title>The structure theory of nilspaces III: Inverse limit representations and topological dynamics</title><title>Advances in mathematics (New York. 1965)</title><description>This paper forms the third part of a series by the authors [12,11] concerning the structure theory of nilspaces. A nilspace is a compact space X together with closed collections of cubesCn(X)⊆X2n, n=1,2,…, satisfying some natural axioms. Our goal is to extend the structure theory of nilspaces obtained by Antolín Camarena and Szegedy, and to provide new proofs. Our main result is that, under the technical assumption that Cn(X) is a connected space for all n, then X is isomorphic (in a strong sense) to an inverse limit of nilmanifolds. This is a direct and slight generalization of the main result of Antolín Camarena and Szegedy. We also apply our methods to obtain structure theorems in the setting of topological dynamics. Specifically, if H is a group (subject to very mild topological assumptions) and (H,X) is a minimal dynamical system, then we give a simple characterization of the maximal pronilfactor of X. This generalizes the case H=Z, which is a theorem of Host, Kra and Maass, although even in that case we give a significantly different proof.</description><subject>Lie groups</subject><subject>Nilmanifold</subject><subject>Nilspace</subject><subject>Nilsystem</subject><subject>Regionally proximal relation</subject><subject>System of finite order</subject><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4C4vMPUm8xtdSdE6UHBTlxLS5MamzEyGJC307Z1S164OZ_EdDh8hjwwWDFj1tF8o1y848HOvoRRXZMZAQMah4ddkBgAsa2pobsldjPupioKJGfne7JDGFA46HQLStEMfTtRbOrgujkpjpG3bPtN2OGKISDvXu0QDjgEjDkkl54dI1WBo8qPv_I_TqqPmNKje6XhPbqzqIj785Zx8vb9tlh_Z-nPVLl_Xmc4LSJm1qFllhbBNsQWT89psp9tGFDVUVa3qXJUGcGtLY03Jy6ZQtSmhEjkXTDOVzwm77OrgYwxo5Rhcr8JJMpBnP3IvJz_y7Ede_EzMy4XB6djRYZBROxw0GhdQJ2m8-4f-BW-1bxk</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Gutman, Yonatan</creator><creator>Manners, Freddie</creator><creator>Varjú, Péter P.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200513</creationdate><title>The structure theory of nilspaces III: Inverse limit representations and topological dynamics</title><author>Gutman, Yonatan ; Manners, Freddie ; Varjú, Péter P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-ffec16f99f84b0d327db082d9470667a73a5d0ebf5dfd52584a7d50693291c1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Lie groups</topic><topic>Nilmanifold</topic><topic>Nilspace</topic><topic>Nilsystem</topic><topic>Regionally proximal relation</topic><topic>System of finite order</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutman, Yonatan</creatorcontrib><creatorcontrib>Manners, Freddie</creatorcontrib><creatorcontrib>Varjú, Péter P.</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutman, Yonatan</au><au>Manners, Freddie</au><au>Varjú, Péter P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structure theory of nilspaces III: Inverse limit representations and topological dynamics</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2020-05-13</date><risdate>2020</risdate><volume>365</volume><spage>107059</spage><pages>107059-</pages><artnum>107059</artnum><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>This paper forms the third part of a series by the authors [12,11] concerning the structure theory of nilspaces. A nilspace is a compact space X together with closed collections of cubesCn(X)⊆X2n, n=1,2,…, satisfying some natural axioms. Our goal is to extend the structure theory of nilspaces obtained by Antolín Camarena and Szegedy, and to provide new proofs. Our main result is that, under the technical assumption that Cn(X) is a connected space for all n, then X is isomorphic (in a strong sense) to an inverse limit of nilmanifolds. This is a direct and slight generalization of the main result of Antolín Camarena and Szegedy. We also apply our methods to obtain structure theorems in the setting of topological dynamics. Specifically, if H is a group (subject to very mild topological assumptions) and (H,X) is a minimal dynamical system, then we give a simple characterization of the maximal pronilfactor of X. This generalizes the case H=Z, which is a theorem of Host, Kra and Maass, although even in that case we give a significantly different proof.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.aim.2020.107059</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8708
ispartof Advances in mathematics (New York. 1965), 2020-05, Vol.365, p.107059, Article 107059
issn 0001-8708
1090-2082
language eng
recordid cdi_crossref_primary_10_1016_j_aim_2020_107059
source ScienceDirect Freedom Collection
subjects Lie groups
Nilmanifold
Nilspace
Nilsystem
Regionally proximal relation
System of finite order
title The structure theory of nilspaces III: Inverse limit representations and topological dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structure%20theory%20of%20nilspaces%20III:%20Inverse%20limit%20representations%20and%20topological%20dynamics&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Gutman,%20Yonatan&rft.date=2020-05-13&rft.volume=365&rft.spage=107059&rft.pages=107059-&rft.artnum=107059&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1016/j.aim.2020.107059&rft_dat=%3Celsevier_cross%3ES0001870820300852%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-ffec16f99f84b0d327db082d9470667a73a5d0ebf5dfd52584a7d50693291c1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true