Loading…

A compactness theorem for SO(3) anti-self-dual equation with translation symmetry

Motivated by the Atiyah–Floer conjecture, we consider SO(3) anti-self-dual instantons on the product of the real line and a three-manifold with cylindrical end. We prove a Gromov–Uhlenbeck type compactness theorem, namely, any sequence of such instantons with uniform energy bound has a subsequence c...

Full description

Saved in:
Bibliographic Details
Published in:Advances in mathematics (New York. 1965) 2022-10, Vol.408, p.108576, Article 108576
Main Author: Xu, Guangbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-48133ed6864f0bd71041b3b82731eb136e93971f937261890510c4f7eb0dcf223
cites cdi_FETCH-LOGICAL-c340t-48133ed6864f0bd71041b3b82731eb136e93971f937261890510c4f7eb0dcf223
container_end_page
container_issue
container_start_page 108576
container_title Advances in mathematics (New York. 1965)
container_volume 408
creator Xu, Guangbo
description Motivated by the Atiyah–Floer conjecture, we consider SO(3) anti-self-dual instantons on the product of the real line and a three-manifold with cylindrical end. We prove a Gromov–Uhlenbeck type compactness theorem, namely, any sequence of such instantons with uniform energy bound has a subsequence converging to a type of singular objects which may have both instanton and holomorphic curve components. In particular, we prove that holomorphic curves that appear in the compactification must satisfy the Lagrangian boundary condition, a claim which has been long believed in the literature. This result is the first step towards constructing a natural bounding cochain proposed by Fukaya for the SO(3) Atiyah–Floer conjecture.
doi_str_mv 10.1016/j.aim.2022.108576
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_aim_2022_108576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870822003930</els_id><sourcerecordid>S0001870822003930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-48133ed6864f0bd71041b3b82731eb136e93971f937261890510c4f7eb0dcf223</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB8_wF2Wuph6bzKdyeCqFF9QKKKuQyZzQ1PmUZNU6b93Sl27upwL3-HwMXaDMEXA4n4zNb6bChBizGpWFidsglBBJkCJUzYBAMxUCeqcXcS4GWOVYzVhb3Nuh25rbOopRp7WNATquBsCf1_dyjtu-uSzSK3Lmp1pOX3tTPJDz398WvMUTB_b4yPuu45S2F-xM2faSNd_95J9Pj1-LF6y5er5dTFfZlbmkLJcoZTUFKrIHdRNiZBjLWslSolUoyyoklWJrpKlKFBVMEOwuSuphsY6IeQlw2OvDUOMgZzeBt-ZsNcI-uBEb_ToRB-c6KOTkXk4MjQO-_YUdLSeekuND2STbgb_D_0L5wNowQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A compactness theorem for SO(3) anti-self-dual equation with translation symmetry</title><source>ScienceDirect Freedom Collection</source><creator>Xu, Guangbo</creator><creatorcontrib>Xu, Guangbo</creatorcontrib><description>Motivated by the Atiyah–Floer conjecture, we consider SO(3) anti-self-dual instantons on the product of the real line and a three-manifold with cylindrical end. We prove a Gromov–Uhlenbeck type compactness theorem, namely, any sequence of such instantons with uniform energy bound has a subsequence converging to a type of singular objects which may have both instanton and holomorphic curve components. In particular, we prove that holomorphic curves that appear in the compactification must satisfy the Lagrangian boundary condition, a claim which has been long believed in the literature. This result is the first step towards constructing a natural bounding cochain proposed by Fukaya for the SO(3) Atiyah–Floer conjecture.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1016/j.aim.2022.108576</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Adiabatic limit ; Atiyah–Floer conjecture ; Compactness</subject><ispartof>Advances in mathematics (New York. 1965), 2022-10, Vol.408, p.108576, Article 108576</ispartof><rights>2022 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-48133ed6864f0bd71041b3b82731eb136e93971f937261890510c4f7eb0dcf223</citedby><cites>FETCH-LOGICAL-c340t-48133ed6864f0bd71041b3b82731eb136e93971f937261890510c4f7eb0dcf223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Guangbo</creatorcontrib><title>A compactness theorem for SO(3) anti-self-dual equation with translation symmetry</title><title>Advances in mathematics (New York. 1965)</title><description>Motivated by the Atiyah–Floer conjecture, we consider SO(3) anti-self-dual instantons on the product of the real line and a three-manifold with cylindrical end. We prove a Gromov–Uhlenbeck type compactness theorem, namely, any sequence of such instantons with uniform energy bound has a subsequence converging to a type of singular objects which may have both instanton and holomorphic curve components. In particular, we prove that holomorphic curves that appear in the compactification must satisfy the Lagrangian boundary condition, a claim which has been long believed in the literature. This result is the first step towards constructing a natural bounding cochain proposed by Fukaya for the SO(3) Atiyah–Floer conjecture.</description><subject>Adiabatic limit</subject><subject>Atiyah–Floer conjecture</subject><subject>Compactness</subject><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWB8_wF2Wuph6bzKdyeCqFF9QKKKuQyZzQ1PmUZNU6b93Sl27upwL3-HwMXaDMEXA4n4zNb6bChBizGpWFidsglBBJkCJUzYBAMxUCeqcXcS4GWOVYzVhb3Nuh25rbOopRp7WNATquBsCf1_dyjtu-uSzSK3Lmp1pOX3tTPJDz398WvMUTB_b4yPuu45S2F-xM2faSNd_95J9Pj1-LF6y5er5dTFfZlbmkLJcoZTUFKrIHdRNiZBjLWslSolUoyyoklWJrpKlKFBVMEOwuSuphsY6IeQlw2OvDUOMgZzeBt-ZsNcI-uBEb_ToRB-c6KOTkXk4MjQO-_YUdLSeekuND2STbgb_D_0L5wNowQ</recordid><startdate>20221029</startdate><enddate>20221029</enddate><creator>Xu, Guangbo</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221029</creationdate><title>A compactness theorem for SO(3) anti-self-dual equation with translation symmetry</title><author>Xu, Guangbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-48133ed6864f0bd71041b3b82731eb136e93971f937261890510c4f7eb0dcf223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adiabatic limit</topic><topic>Atiyah–Floer conjecture</topic><topic>Compactness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Guangbo</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Guangbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A compactness theorem for SO(3) anti-self-dual equation with translation symmetry</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2022-10-29</date><risdate>2022</risdate><volume>408</volume><spage>108576</spage><pages>108576-</pages><artnum>108576</artnum><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>Motivated by the Atiyah–Floer conjecture, we consider SO(3) anti-self-dual instantons on the product of the real line and a three-manifold with cylindrical end. We prove a Gromov–Uhlenbeck type compactness theorem, namely, any sequence of such instantons with uniform energy bound has a subsequence converging to a type of singular objects which may have both instanton and holomorphic curve components. In particular, we prove that holomorphic curves that appear in the compactification must satisfy the Lagrangian boundary condition, a claim which has been long believed in the literature. This result is the first step towards constructing a natural bounding cochain proposed by Fukaya for the SO(3) Atiyah–Floer conjecture.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.aim.2022.108576</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8708
ispartof Advances in mathematics (New York. 1965), 2022-10, Vol.408, p.108576, Article 108576
issn 0001-8708
1090-2082
language eng
recordid cdi_crossref_primary_10_1016_j_aim_2022_108576
source ScienceDirect Freedom Collection
subjects Adiabatic limit
Atiyah–Floer conjecture
Compactness
title A compactness theorem for SO(3) anti-self-dual equation with translation symmetry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20compactness%20theorem%20for%20SO(3)%20anti-self-dual%20equation%20with%20translation%20symmetry&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Xu,%20Guangbo&rft.date=2022-10-29&rft.volume=408&rft.spage=108576&rft.pages=108576-&rft.artnum=108576&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1016/j.aim.2022.108576&rft_dat=%3Celsevier_cross%3ES0001870822003930%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-48133ed6864f0bd71041b3b82731eb136e93971f937261890510c4f7eb0dcf223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true