Loading…

On a smoothness characterization for good moduli spaces

Let X be a smooth Artin stack with properly stable good moduli space X→πX. The purpose of this paper is to prove that a simple geometric criterion can often characterize when the moduli space X is smooth and the morphism π is flat.

Saved in:
Bibliographic Details
Published in:Advances in mathematics (New York. 1965) 2024-04, Vol.442, p.109564, Article 109564
Main Authors: Edidin, Dan, Satriano, Matthew, Whitehead, Spencer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c292t-8fbdce87ae412792db81c2e0d8b4146842ea4805458230a0c26a85710b48af3d3
container_end_page
container_issue
container_start_page 109564
container_title Advances in mathematics (New York. 1965)
container_volume 442
creator Edidin, Dan
Satriano, Matthew
Whitehead, Spencer
description Let X be a smooth Artin stack with properly stable good moduli space X→πX. The purpose of this paper is to prove that a simple geometric criterion can often characterize when the moduli space X is smooth and the morphism π is flat.
doi_str_mv 10.1016/j.aim.2024.109564
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_aim_2024_109564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870824000793</els_id><sourcerecordid>S0001870824000793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-8fbdce87ae412792db81c2e0d8b4146842ea4805458230a0c26a85710b48af3d3</originalsourceid><addsrcrecordid>eNp9j81KxDAUhYMoWEcfwF1eoPUmTdsUVzL4BwOz0XW4TW6dlGkzJFXQp7fDuHZ17ll8l_MxdiugECDqu6FAPxYSpFp6W9XqjGXLAbkELc9ZBgAi1w3oS3aV0rDUVok2Y8124sjTGMK8myglbncY0c4U_Q_OPky8D5F_hOD4GNzn3vN0QEvpml30uE9085cr9v70-LZ-yTfb59f1wya3spVzrvvOWdINkhKyaaXrtLCSwOlOCVVrJQmVhkpVWpaAYGWNumoEdEpjX7pyxcTpr40hpUi9OUQ_Yvw2AszR3AxmMTdHc3MyX5j7E0PLsC9P0STrabLkfCQ7Gxf8P_Qv44VgRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a smoothness characterization for good moduli spaces</title><source>ScienceDirect Journals</source><creator>Edidin, Dan ; Satriano, Matthew ; Whitehead, Spencer</creator><creatorcontrib>Edidin, Dan ; Satriano, Matthew ; Whitehead, Spencer</creatorcontrib><description>Let X be a smooth Artin stack with properly stable good moduli space X→πX. The purpose of this paper is to prove that a simple geometric criterion can often characterize when the moduli space X is smooth and the morphism π is flat.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1016/j.aim.2024.109564</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Chevalley-shephard-Todd theorem ; Cofree ; Coregular ; Geometric invariant theory (GIT) ; Good moduli spaces ; Purity of the branch locus ; Stacks</subject><ispartof>Advances in mathematics (New York. 1965), 2024-04, Vol.442, p.109564, Article 109564</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-8fbdce87ae412792db81c2e0d8b4146842ea4805458230a0c26a85710b48af3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Edidin, Dan</creatorcontrib><creatorcontrib>Satriano, Matthew</creatorcontrib><creatorcontrib>Whitehead, Spencer</creatorcontrib><title>On a smoothness characterization for good moduli spaces</title><title>Advances in mathematics (New York. 1965)</title><description>Let X be a smooth Artin stack with properly stable good moduli space X→πX. The purpose of this paper is to prove that a simple geometric criterion can often characterize when the moduli space X is smooth and the morphism π is flat.</description><subject>Chevalley-shephard-Todd theorem</subject><subject>Cofree</subject><subject>Coregular</subject><subject>Geometric invariant theory (GIT)</subject><subject>Good moduli spaces</subject><subject>Purity of the branch locus</subject><subject>Stacks</subject><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j81KxDAUhYMoWEcfwF1eoPUmTdsUVzL4BwOz0XW4TW6dlGkzJFXQp7fDuHZ17ll8l_MxdiugECDqu6FAPxYSpFp6W9XqjGXLAbkELc9ZBgAi1w3oS3aV0rDUVok2Y8124sjTGMK8myglbncY0c4U_Q_OPky8D5F_hOD4GNzn3vN0QEvpml30uE9085cr9v70-LZ-yTfb59f1wya3spVzrvvOWdINkhKyaaXrtLCSwOlOCVVrJQmVhkpVWpaAYGWNumoEdEpjX7pyxcTpr40hpUi9OUQ_Yvw2AszR3AxmMTdHc3MyX5j7E0PLsC9P0STrabLkfCQ7Gxf8P_Qv44VgRw</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Edidin, Dan</creator><creator>Satriano, Matthew</creator><creator>Whitehead, Spencer</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202404</creationdate><title>On a smoothness characterization for good moduli spaces</title><author>Edidin, Dan ; Satriano, Matthew ; Whitehead, Spencer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-8fbdce87ae412792db81c2e0d8b4146842ea4805458230a0c26a85710b48af3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chevalley-shephard-Todd theorem</topic><topic>Cofree</topic><topic>Coregular</topic><topic>Geometric invariant theory (GIT)</topic><topic>Good moduli spaces</topic><topic>Purity of the branch locus</topic><topic>Stacks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edidin, Dan</creatorcontrib><creatorcontrib>Satriano, Matthew</creatorcontrib><creatorcontrib>Whitehead, Spencer</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edidin, Dan</au><au>Satriano, Matthew</au><au>Whitehead, Spencer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a smoothness characterization for good moduli spaces</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2024-04</date><risdate>2024</risdate><volume>442</volume><spage>109564</spage><pages>109564-</pages><artnum>109564</artnum><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>Let X be a smooth Artin stack with properly stable good moduli space X→πX. The purpose of this paper is to prove that a simple geometric criterion can often characterize when the moduli space X is smooth and the morphism π is flat.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.aim.2024.109564</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8708
ispartof Advances in mathematics (New York. 1965), 2024-04, Vol.442, p.109564, Article 109564
issn 0001-8708
1090-2082
language eng
recordid cdi_crossref_primary_10_1016_j_aim_2024_109564
source ScienceDirect Journals
subjects Chevalley-shephard-Todd theorem
Cofree
Coregular
Geometric invariant theory (GIT)
Good moduli spaces
Purity of the branch locus
Stacks
title On a smoothness characterization for good moduli spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20smoothness%20characterization%20for%20good%20moduli%20spaces&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Edidin,%20Dan&rft.date=2024-04&rft.volume=442&rft.spage=109564&rft.pages=109564-&rft.artnum=109564&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1016/j.aim.2024.109564&rft_dat=%3Celsevier_cross%3ES0001870824000793%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-8fbdce87ae412792db81c2e0d8b4146842ea4805458230a0c26a85710b48af3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true