Loading…
Innovative technology for microalgal cell preservation through immobilization in polylactic acid nanofibers
Microalgae are of great biotechnological importance. Thus, it is essential to apply maintenance methods for the utilization of microalgae at any time. Facilitating microalgae adsorption processes on nanofibers may be a promising approach for microalgae preservation. Thus, the objective of this study...
Saved in:
Published in: | Algal research (Amsterdam) 2024-12, Vol.84, p.103781, Article 103781 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microalgae are of great biotechnological importance. Thus, it is essential to apply maintenance methods for the utilization of microalgae at any time. Facilitating microalgae adsorption processes on nanofibers may be a promising approach for microalgae preservation. Thus, the objective of this study was to apply poly (lactic acid) nanofibers in the preservation of microalgae Chlorella fusca LEB 111 cells. The nanofibers were characterized regarding their morphology, thermal properties, structural characteristics and wettability. The microalgae cells were immobilized on the nanofibers and stored for 30 days at room temperature, refrigeration and thermostated chamber. Free microalgae cells were also maintained for the same period under the same conditions of the traditional method of microalgae preservation, continuous replication. The cell viability of the free and immobilized cells on the nanofibers was analyzed by Neutral Red (NR) and Trypan Blue (TB). At the end of the experiment, the immobilized cells showed greater viability (94 and 100 %) compared to the free cells (84 %). The cultivation of immobilized cells showed significant cell growth on the 25th day of cultivation for the evaluated storage conditions (3.6, 3.6 and 2.8 g L−1 for refrigeration, room temperature and thermostatted chamber, respectively). Therefore, poly (lactic acid) nanofibers (PLA) are characterized as an innovative technology for microalgae maintenance.
•The nanofibers showed ideal characteristics for microalgae preservation.•The nanofibers were able to maintain microalgae cell viability by adsorption processes.•The cells adsorbed on the nanofibers showed growth in microalgal cultivations. |
---|---|
ISSN: | 2211-9264 2211-9264 |
DOI: | 10.1016/j.algal.2024.103781 |