Loading…
Event-triggered networked H∞ control of discrete-time nonlinear singular systems
This paper is concerned with H∞ controller design for a class of discrete-time nonlinear singular system which is controlled over a communication network. The network-induced delay is considered, and its distribution characteristic is described by a Bernoulli stochastic variable. A novel event-trigg...
Saved in:
Published in: | Applied mathematics and computation 2017-04, Vol.298, p.368-382 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is concerned with H∞ controller design for a class of discrete-time nonlinear singular system which is controlled over a communication network. The network-induced delay is considered, and its distribution characteristic is described by a Bernoulli stochastic variable. A novel event-triggered control scheme is proposed in order to save the limited network communication bandwidth. Based on the Lyapunov–Kravoskii stability theory, a delay-distribution-dependent criterion is derived which guarantees the closed-loop networked discrete-time nonlinear singular system is regular, causal, and stable with a certain H∞ performance index. A co-design method for the H∞ controller and the event-triggered scheme is presented by using the singular value decomposition technology. An numerical example is given to illustrate the effectiveness of the proposed method. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2016.11.010 |