Loading…

A nonnegativity preserved efficient chemical solver applied to the air pollution forecast

Air pollution forecast is becoming more and more important nowadays. The numerically sticky chemical ordinary differential equations (ODEs) is a critical component of air pollution models. Various solvers have been designed for the chemical ODEs in the past. However, they are either slow or imprecis...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2017-12, Vol.314, p.44-57
Main Authors: Feng, Fan, Chi, Xuebin, Wang, Zifa, Li, Jie, Jiang, Jinrong, Yang, Wenyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Air pollution forecast is becoming more and more important nowadays. The numerically sticky chemical ordinary differential equations (ODEs) is a critical component of air pollution models. Various solvers have been designed for the chemical ODEs in the past. However, they are either slow or imprecise. In our previous work, we have designed a nonnegativity preserved efficient chemical solver MBE, which is an acronym for Modified-Backward-Euler. In this paper, we review MBE method and prove its convergence and stability mathematically, which guarantee that MBE results converge to the exact solutions as the step-size becomes smaller and MBE results with relatively small step-size can be used as the standard. Then we apply MBE to the Nested Air Quality Prediction Modeling System (NAQPMS). Comparison between MBE and the most popular solver LSODE is also made. Considering the speed and precision, MBE is a better choice for the air pollution forecast.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2017.06.008