Loading…
New criteria of stability analysis for generalized neural networks subject to time-varying delayed signals
This paper focuses on the new criteria of stability analysis for generalized neural networks (GNNs) subject to time-varying delayed signals. A new methodology is employed with the aids of slack variables. By constructing an augmented Lyapunov–Krasovskii functional (LKF) involving Newton–Leibniz enum...
Saved in:
Published in: | Applied mathematics and computation 2017-12, Vol.314, p.322-333 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper focuses on the new criteria of stability analysis for generalized neural networks (GNNs) subject to time-varying delayed signals. A new methodology is employed with the aids of slack variables. By constructing an augmented Lyapunov–Krasovskii functional (LKF) involving Newton–Leibniz enumerating and triple integral term, some less conservative conditions are achieved in terms of linear matrix inequality (LMI). Numerical examples including real-time application are given to illustrate the superiority and effectiveness of proposed approach. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2017.06.031 |