Loading…

Implementation of compressible porous–fluid coupling method in an aerodynamics and aeroacoustics code part I: Laminar flow

The problem of coupling compressible viscous flow in free stream and a porous medium into one solver is addressed in this work. A single-domain compressible Darcy–Forchheimer model extended from the Navier–Stokes equation is developed for this purpose. The set of governing equations accounting for m...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2020-01, Vol.364, p.124682, Article 124682
Main Authors: Li, Zhiyong, Zhang, Huaibao, Liu, Yu, McDonough, James M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-41a67072594fd1a6735573597561c1e54e1685c81e3d00934a6deaaf8d6e208d3
cites cdi_FETCH-LOGICAL-c297t-41a67072594fd1a6735573597561c1e54e1685c81e3d00934a6deaaf8d6e208d3
container_end_page
container_issue
container_start_page 124682
container_title Applied mathematics and computation
container_volume 364
creator Li, Zhiyong
Zhang, Huaibao
Liu, Yu
McDonough, James M.
description The problem of coupling compressible viscous flow in free stream and a porous medium into one solver is addressed in this work. A single-domain compressible Darcy–Forchheimer model extended from the Navier–Stokes equation is developed for this purpose. The set of governing equations accounting for mass conservation and momentum and energy balance is first presented for the coupling method, followed by implementation details within a finite-volume framework. Steady numerical simulations focus on two classical problems: porous plug flow and the Beavers and Joseph problem. Both are successfully performed, demonstrating the feasibility and capability of this approach. An unsteady problem of flow over a square porous cylinder is then modeled; and results are compared with those from the existing literature, demonstrating the accuracy of the method for unsteady cases.
doi_str_mv 10.1016/j.amc.2019.124682
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2019_124682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300319306745</els_id><sourcerecordid>S0096300319306745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-41a67072594fd1a6735573597561c1e54e1685c81e3d00934a6deaaf8d6e208d3</originalsourceid><addsrcrecordid>eNp9UM1KxDAQDqLguvoA3vICrUnbpK2eZPFnYcGLnkNMJpqlbUqSKgsefAff0CcxdT0LM8zf9w0zH0LnlOSUUH6xzWWv8oLQNqdFxZviAC1oU5cZ41V7iBaEtDwrCSmP0UkIW0JIzWm1QB_rfuyghyHKaN2AncHK9aOHEOxzB3h03k3h-_PLdJPVaTaNnR1ecA_x1WlsByyTgXd6N8jeqpBq_duQCRvi3FFOp0XSR7y-xJuEGqTHpnPvp-jIyC7A2V9coqfbm8fVfbZ5uFuvrjeZKto6ZhWVvCZ1wdrK6DkvGUve1oxTRYFVQHnDVEOh1OnPspJcg5Sm0RwK0uhyieh-r_IuBA9GjN720u8EJWKWT2xFkk_M8om9fIlztedAOuzNghdBWRgUaOtBRaGd_Yf9A68Hetc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Implementation of compressible porous–fluid coupling method in an aerodynamics and aeroacoustics code part I: Laminar flow</title><source>Elsevier</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Li, Zhiyong ; Zhang, Huaibao ; Liu, Yu ; McDonough, James M.</creator><creatorcontrib>Li, Zhiyong ; Zhang, Huaibao ; Liu, Yu ; McDonough, James M.</creatorcontrib><description>The problem of coupling compressible viscous flow in free stream and a porous medium into one solver is addressed in this work. A single-domain compressible Darcy–Forchheimer model extended from the Navier–Stokes equation is developed for this purpose. The set of governing equations accounting for mass conservation and momentum and energy balance is first presented for the coupling method, followed by implementation details within a finite-volume framework. Steady numerical simulations focus on two classical problems: porous plug flow and the Beavers and Joseph problem. Both are successfully performed, demonstrating the feasibility and capability of this approach. An unsteady problem of flow over a square porous cylinder is then modeled; and results are compared with those from the existing literature, demonstrating the accuracy of the method for unsteady cases.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2019.124682</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Compressible solver ; Finite volume ; Porous square cylinder ; Porous–fluid coupling</subject><ispartof>Applied mathematics and computation, 2020-01, Vol.364, p.124682, Article 124682</ispartof><rights>2019 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-41a67072594fd1a6735573597561c1e54e1685c81e3d00934a6deaaf8d6e208d3</citedby><cites>FETCH-LOGICAL-c297t-41a67072594fd1a6735573597561c1e54e1685c81e3d00934a6deaaf8d6e208d3</cites><orcidid>0000-0001-6076-0245 ; 0000-0003-1112-1863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300319306745$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3564,27924,27925,45972,46003</link.rule.ids></links><search><creatorcontrib>Li, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Huaibao</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>McDonough, James M.</creatorcontrib><title>Implementation of compressible porous–fluid coupling method in an aerodynamics and aeroacoustics code part I: Laminar flow</title><title>Applied mathematics and computation</title><description>The problem of coupling compressible viscous flow in free stream and a porous medium into one solver is addressed in this work. A single-domain compressible Darcy–Forchheimer model extended from the Navier–Stokes equation is developed for this purpose. The set of governing equations accounting for mass conservation and momentum and energy balance is first presented for the coupling method, followed by implementation details within a finite-volume framework. Steady numerical simulations focus on two classical problems: porous plug flow and the Beavers and Joseph problem. Both are successfully performed, demonstrating the feasibility and capability of this approach. An unsteady problem of flow over a square porous cylinder is then modeled; and results are compared with those from the existing literature, demonstrating the accuracy of the method for unsteady cases.</description><subject>Compressible solver</subject><subject>Finite volume</subject><subject>Porous square cylinder</subject><subject>Porous–fluid coupling</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UM1KxDAQDqLguvoA3vICrUnbpK2eZPFnYcGLnkNMJpqlbUqSKgsefAff0CcxdT0LM8zf9w0zH0LnlOSUUH6xzWWv8oLQNqdFxZviAC1oU5cZ41V7iBaEtDwrCSmP0UkIW0JIzWm1QB_rfuyghyHKaN2AncHK9aOHEOxzB3h03k3h-_PLdJPVaTaNnR1ecA_x1WlsByyTgXd6N8jeqpBq_duQCRvi3FFOp0XSR7y-xJuEGqTHpnPvp-jIyC7A2V9coqfbm8fVfbZ5uFuvrjeZKto6ZhWVvCZ1wdrK6DkvGUve1oxTRYFVQHnDVEOh1OnPspJcg5Sm0RwK0uhyieh-r_IuBA9GjN720u8EJWKWT2xFkk_M8om9fIlztedAOuzNghdBWRgUaOtBRaGd_Yf9A68Hetc</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Li, Zhiyong</creator><creator>Zhang, Huaibao</creator><creator>Liu, Yu</creator><creator>McDonough, James M.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6076-0245</orcidid><orcidid>https://orcid.org/0000-0003-1112-1863</orcidid></search><sort><creationdate>20200101</creationdate><title>Implementation of compressible porous–fluid coupling method in an aerodynamics and aeroacoustics code part I: Laminar flow</title><author>Li, Zhiyong ; Zhang, Huaibao ; Liu, Yu ; McDonough, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-41a67072594fd1a6735573597561c1e54e1685c81e3d00934a6deaaf8d6e208d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compressible solver</topic><topic>Finite volume</topic><topic>Porous square cylinder</topic><topic>Porous–fluid coupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Huaibao</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>McDonough, James M.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhiyong</au><au>Zhang, Huaibao</au><au>Liu, Yu</au><au>McDonough, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of compressible porous–fluid coupling method in an aerodynamics and aeroacoustics code part I: Laminar flow</atitle><jtitle>Applied mathematics and computation</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>364</volume><spage>124682</spage><pages>124682-</pages><artnum>124682</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>The problem of coupling compressible viscous flow in free stream and a porous medium into one solver is addressed in this work. A single-domain compressible Darcy–Forchheimer model extended from the Navier–Stokes equation is developed for this purpose. The set of governing equations accounting for mass conservation and momentum and energy balance is first presented for the coupling method, followed by implementation details within a finite-volume framework. Steady numerical simulations focus on two classical problems: porous plug flow and the Beavers and Joseph problem. Both are successfully performed, demonstrating the feasibility and capability of this approach. An unsteady problem of flow over a square porous cylinder is then modeled; and results are compared with those from the existing literature, demonstrating the accuracy of the method for unsteady cases.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2019.124682</doi><orcidid>https://orcid.org/0000-0001-6076-0245</orcidid><orcidid>https://orcid.org/0000-0003-1112-1863</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2020-01, Vol.364, p.124682, Article 124682
issn 0096-3003
1873-5649
language eng
recordid cdi_crossref_primary_10_1016_j_amc_2019_124682
source Elsevier; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
subjects Compressible solver
Finite volume
Porous square cylinder
Porous–fluid coupling
title Implementation of compressible porous–fluid coupling method in an aerodynamics and aeroacoustics code part I: Laminar flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20compressible%20porous%E2%80%93fluid%20coupling%20method%20in%20an%20aerodynamics%20and%20aeroacoustics%20code%20part%20I:%20Laminar%20flow&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Li,%20Zhiyong&rft.date=2020-01-01&rft.volume=364&rft.spage=124682&rft.pages=124682-&rft.artnum=124682&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2019.124682&rft_dat=%3Celsevier_cross%3ES0096300319306745%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-41a67072594fd1a6735573597561c1e54e1685c81e3d00934a6deaaf8d6e208d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true