Loading…

Parametric instability analysis of laminated composite plate subject to various types of non-uniform periodic in-plane edge load

In this paper, the dynamic instability behavior of laminated composite plate structure is predicted under different types of non-uniform harmonic edge compressive loading. A nine degree of freedom (DOF) type polynomial based higher order shear deformation theory (HSDT) is considered for the finite e...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2020-05, Vol.373, p.125026, Article 125026
Main Authors: Adhikari, Balakrishna, Singh, B.N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-3cf181a2cfb6e083b35899d178b265fe26cd2d3130bddf588a030ffdada1299e3
cites cdi_FETCH-LOGICAL-c297t-3cf181a2cfb6e083b35899d178b265fe26cd2d3130bddf588a030ffdada1299e3
container_end_page
container_issue
container_start_page 125026
container_title Applied mathematics and computation
container_volume 373
creator Adhikari, Balakrishna
Singh, B.N.
description In this paper, the dynamic instability behavior of laminated composite plate structure is predicted under different types of non-uniform harmonic edge compressive loading. A nine degree of freedom (DOF) type polynomial based higher order shear deformation theory (HSDT) is considered for the finite element discretization of the plate. The application of non-uniform harmonic in-plane edge load causes the in-plane stress variation to be non-uniform. Hence, the in-plane stresses need to be evaluated, prior to the instability analysis, for the evaluation of critical buckling load. These in-plane stresses are computed using in-plane stress analysis approach using finite element method. The differential equations of motion of the system are turned into a set of ordinary differential equations (Mathieu type equations) and solved as a general eigenvalue problem as per the procedure suggested by Bolotin. The accuracy and flexibility of the present model are validated by contrasting the present outcomes and the available solution. Further, the impact various parameters like span-thickness ratio, aspect ratio, diverse in edge constraints, different types of non-uniform periodic edge load, etc. on the dynamic instability behavior of the laminated composite plate are contemplated.
doi_str_mv 10.1016/j.amc.2019.125026
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2019_125026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300319310185</els_id><sourcerecordid>S0096300319310185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-3cf181a2cfb6e083b35899d178b265fe26cd2d3130bddf588a030ffdada1299e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG_5A6352KYNnmTxCxb0oOeQJhNJaZuSZBd686fbdT17GpjhmZn3QeiWkpISKu66Ug-mZITKkrKKMHGGVrSpeVGJjTxHK0KkKDgh_BJdpdQRQmpBNyv0_a6jHiBHb7AfU9at732esR51PyefcHC414MfdQaLTRimkHwGPPVLA6d924HJOAd80NGHfcJ5nuCXGsNY7EfvQhzwBMvQ_p4oFnIEDPYLcB-0vUYXTvcJbv7qGn0-PX5sX4rd2_Pr9mFXGCbrXHDjaEM1M64VQBre8qqR0tK6aZmoHDBhLLOcctJa66qm0YQT56y2mjIpga8RPe01MaQUwakp-kHHWVGijgpVpxaF6qhQnRQuzP2JgeWxg4eokvEwGrA-LrGVDf4f-gfZBnz_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parametric instability analysis of laminated composite plate subject to various types of non-uniform periodic in-plane edge load</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Adhikari, Balakrishna ; Singh, B.N.</creator><creatorcontrib>Adhikari, Balakrishna ; Singh, B.N.</creatorcontrib><description>In this paper, the dynamic instability behavior of laminated composite plate structure is predicted under different types of non-uniform harmonic edge compressive loading. A nine degree of freedom (DOF) type polynomial based higher order shear deformation theory (HSDT) is considered for the finite element discretization of the plate. The application of non-uniform harmonic in-plane edge load causes the in-plane stress variation to be non-uniform. Hence, the in-plane stresses need to be evaluated, prior to the instability analysis, for the evaluation of critical buckling load. These in-plane stresses are computed using in-plane stress analysis approach using finite element method. The differential equations of motion of the system are turned into a set of ordinary differential equations (Mathieu type equations) and solved as a general eigenvalue problem as per the procedure suggested by Bolotin. The accuracy and flexibility of the present model are validated by contrasting the present outcomes and the available solution. Further, the impact various parameters like span-thickness ratio, aspect ratio, diverse in edge constraints, different types of non-uniform periodic edge load, etc. on the dynamic instability behavior of the laminated composite plate are contemplated.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2019.125026</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Dynamic instability ; Finite element method ; Higher order theory ; Laminated composite plate ; Non-uniform periodic in-plane edge load</subject><ispartof>Applied mathematics and computation, 2020-05, Vol.373, p.125026, Article 125026</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-3cf181a2cfb6e083b35899d178b265fe26cd2d3130bddf588a030ffdada1299e3</citedby><cites>FETCH-LOGICAL-c297t-3cf181a2cfb6e083b35899d178b265fe26cd2d3130bddf588a030ffdada1299e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300319310185$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3564,27924,27925,45972,46003</link.rule.ids></links><search><creatorcontrib>Adhikari, Balakrishna</creatorcontrib><creatorcontrib>Singh, B.N.</creatorcontrib><title>Parametric instability analysis of laminated composite plate subject to various types of non-uniform periodic in-plane edge load</title><title>Applied mathematics and computation</title><description>In this paper, the dynamic instability behavior of laminated composite plate structure is predicted under different types of non-uniform harmonic edge compressive loading. A nine degree of freedom (DOF) type polynomial based higher order shear deformation theory (HSDT) is considered for the finite element discretization of the plate. The application of non-uniform harmonic in-plane edge load causes the in-plane stress variation to be non-uniform. Hence, the in-plane stresses need to be evaluated, prior to the instability analysis, for the evaluation of critical buckling load. These in-plane stresses are computed using in-plane stress analysis approach using finite element method. The differential equations of motion of the system are turned into a set of ordinary differential equations (Mathieu type equations) and solved as a general eigenvalue problem as per the procedure suggested by Bolotin. The accuracy and flexibility of the present model are validated by contrasting the present outcomes and the available solution. Further, the impact various parameters like span-thickness ratio, aspect ratio, diverse in edge constraints, different types of non-uniform periodic edge load, etc. on the dynamic instability behavior of the laminated composite plate are contemplated.</description><subject>Dynamic instability</subject><subject>Finite element method</subject><subject>Higher order theory</subject><subject>Laminated composite plate</subject><subject>Non-uniform periodic in-plane edge load</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG_5A6352KYNnmTxCxb0oOeQJhNJaZuSZBd686fbdT17GpjhmZn3QeiWkpISKu66Ug-mZITKkrKKMHGGVrSpeVGJjTxHK0KkKDgh_BJdpdQRQmpBNyv0_a6jHiBHb7AfU9at732esR51PyefcHC414MfdQaLTRimkHwGPPVLA6d924HJOAd80NGHfcJ5nuCXGsNY7EfvQhzwBMvQ_p4oFnIEDPYLcB-0vUYXTvcJbv7qGn0-PX5sX4rd2_Pr9mFXGCbrXHDjaEM1M64VQBre8qqR0tK6aZmoHDBhLLOcctJa66qm0YQT56y2mjIpga8RPe01MaQUwakp-kHHWVGijgpVpxaF6qhQnRQuzP2JgeWxg4eokvEwGrA-LrGVDf4f-gfZBnz_</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Adhikari, Balakrishna</creator><creator>Singh, B.N.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200515</creationdate><title>Parametric instability analysis of laminated composite plate subject to various types of non-uniform periodic in-plane edge load</title><author>Adhikari, Balakrishna ; Singh, B.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-3cf181a2cfb6e083b35899d178b265fe26cd2d3130bddf588a030ffdada1299e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dynamic instability</topic><topic>Finite element method</topic><topic>Higher order theory</topic><topic>Laminated composite plate</topic><topic>Non-uniform periodic in-plane edge load</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhikari, Balakrishna</creatorcontrib><creatorcontrib>Singh, B.N.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhikari, Balakrishna</au><au>Singh, B.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric instability analysis of laminated composite plate subject to various types of non-uniform periodic in-plane edge load</atitle><jtitle>Applied mathematics and computation</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>373</volume><spage>125026</spage><pages>125026-</pages><artnum>125026</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>In this paper, the dynamic instability behavior of laminated composite plate structure is predicted under different types of non-uniform harmonic edge compressive loading. A nine degree of freedom (DOF) type polynomial based higher order shear deformation theory (HSDT) is considered for the finite element discretization of the plate. The application of non-uniform harmonic in-plane edge load causes the in-plane stress variation to be non-uniform. Hence, the in-plane stresses need to be evaluated, prior to the instability analysis, for the evaluation of critical buckling load. These in-plane stresses are computed using in-plane stress analysis approach using finite element method. The differential equations of motion of the system are turned into a set of ordinary differential equations (Mathieu type equations) and solved as a general eigenvalue problem as per the procedure suggested by Bolotin. The accuracy and flexibility of the present model are validated by contrasting the present outcomes and the available solution. Further, the impact various parameters like span-thickness ratio, aspect ratio, diverse in edge constraints, different types of non-uniform periodic edge load, etc. on the dynamic instability behavior of the laminated composite plate are contemplated.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2019.125026</doi></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2020-05, Vol.373, p.125026, Article 125026
issn 0096-3003
1873-5649
language eng
recordid cdi_crossref_primary_10_1016_j_amc_2019_125026
source ScienceDirect Freedom Collection; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
subjects Dynamic instability
Finite element method
Higher order theory
Laminated composite plate
Non-uniform periodic in-plane edge load
title Parametric instability analysis of laminated composite plate subject to various types of non-uniform periodic in-plane edge load
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20instability%20analysis%20of%20laminated%20composite%20plate%20subject%20to%20various%20types%20of%20non-uniform%20periodic%20in-plane%20edge%20load&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Adhikari,%20Balakrishna&rft.date=2020-05-15&rft.volume=373&rft.spage=125026&rft.pages=125026-&rft.artnum=125026&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2019.125026&rft_dat=%3Celsevier_cross%3ES0096300319310185%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-3cf181a2cfb6e083b35899d178b265fe26cd2d3130bddf588a030ffdada1299e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true