Loading…

Quaternion and fractional Fourier transform in higher dimension

Several quaternion Fourier transforms have received considerable attention in the last years. In this paper, based on the symplectic decomposition of quaternions, we prove that the Hermite functions in the spherical basis are the eigenfunctions of the QFTs. The relationship with Radon transform, the...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2021-01, Vol.389, p.125585, Article 125585
Main Author: Lian, Pan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-249c04ada46b7fd8c6856f71f97d05be5037d8c4f21ce848c987f6e7088907033
cites cdi_FETCH-LOGICAL-c297t-249c04ada46b7fd8c6856f71f97d05be5037d8c4f21ce848c987f6e7088907033
container_end_page
container_issue
container_start_page 125585
container_title Applied mathematics and computation
container_volume 389
creator Lian, Pan
description Several quaternion Fourier transforms have received considerable attention in the last years. In this paper, based on the symplectic decomposition of quaternions, we prove that the Hermite functions in the spherical basis are the eigenfunctions of the QFTs. The relationship with Radon transform, the real and complex Paley-Wiener theorem, as well as the sampling formula for the 2-sided QFT are established in an easy way. Moreover, a two parameter fractional Fourier transform is introduced based on a new direct sum decomposition of the L2 space. The explicit formula and bound of the kernel are obtained. Compared with the Clifford-Fourier transform defined using eigenfunctions, the main adventure of this transform is that the integral kernel has a uniform bound for all dimensions.
doi_str_mv 10.1016/j.amc.2020.125585
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2020_125585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300320305415</els_id><sourcerecordid>S0096300320305415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-249c04ada46b7fd8c6856f71f97d05be5037d8c4f21ce848c987f6e7088907033</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMouFYfwLt9gV0nu_nFC5Fiq1AQQa9Dmh-bpZuVZCv49qbUa6-Gc5gzzPkQusXQYsDsbmj1aNoOuqI7SgU9QxUWvG8oI_IcVQCSNT1Af4much4AgDNMKvTwdtCzSzFMsdbR1j5pMxeh9_VqOqTgUj0nHbOf0liHWO_C5654Nowu5rJ3jS683md38zcX6GP19L58bjav65fl46YxneRz0xFpgGirCdtyb4VhgjLPsZfcAt06Cj0vLvEdNk4QYaTgnjkOQkjg0PcLhE93TZpyTs6rrxRGnX4UBnUkoAZVCKgjAXUiUDL3p4wrj32XKiqb4KJxNiRnZmWn8E_6F89LY34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quaternion and fractional Fourier transform in higher dimension</title><source>Elsevier</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Lian, Pan</creator><creatorcontrib>Lian, Pan</creatorcontrib><description>Several quaternion Fourier transforms have received considerable attention in the last years. In this paper, based on the symplectic decomposition of quaternions, we prove that the Hermite functions in the spherical basis are the eigenfunctions of the QFTs. The relationship with Radon transform, the real and complex Paley-Wiener theorem, as well as the sampling formula for the 2-sided QFT are established in an easy way. Moreover, a two parameter fractional Fourier transform is introduced based on a new direct sum decomposition of the L2 space. The explicit formula and bound of the kernel are obtained. Compared with the Clifford-Fourier transform defined using eigenfunctions, the main adventure of this transform is that the integral kernel has a uniform bound for all dimensions.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2020.125585</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Fractional Fourier transform ; Hermite function ; Paley-Wiener theorem ; Quaternion</subject><ispartof>Applied mathematics and computation, 2021-01, Vol.389, p.125585, Article 125585</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-249c04ada46b7fd8c6856f71f97d05be5037d8c4f21ce848c987f6e7088907033</citedby><cites>FETCH-LOGICAL-c297t-249c04ada46b7fd8c6856f71f97d05be5037d8c4f21ce848c987f6e7088907033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300320305415$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3427,3562,27923,27924,45971,46002</link.rule.ids></links><search><creatorcontrib>Lian, Pan</creatorcontrib><title>Quaternion and fractional Fourier transform in higher dimension</title><title>Applied mathematics and computation</title><description>Several quaternion Fourier transforms have received considerable attention in the last years. In this paper, based on the symplectic decomposition of quaternions, we prove that the Hermite functions in the spherical basis are the eigenfunctions of the QFTs. The relationship with Radon transform, the real and complex Paley-Wiener theorem, as well as the sampling formula for the 2-sided QFT are established in an easy way. Moreover, a two parameter fractional Fourier transform is introduced based on a new direct sum decomposition of the L2 space. The explicit formula and bound of the kernel are obtained. Compared with the Clifford-Fourier transform defined using eigenfunctions, the main adventure of this transform is that the integral kernel has a uniform bound for all dimensions.</description><subject>Fractional Fourier transform</subject><subject>Hermite function</subject><subject>Paley-Wiener theorem</subject><subject>Quaternion</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhYMouFYfwLt9gV0nu_nFC5Fiq1AQQa9Dmh-bpZuVZCv49qbUa6-Gc5gzzPkQusXQYsDsbmj1aNoOuqI7SgU9QxUWvG8oI_IcVQCSNT1Af4much4AgDNMKvTwdtCzSzFMsdbR1j5pMxeh9_VqOqTgUj0nHbOf0liHWO_C5654Nowu5rJ3jS683md38zcX6GP19L58bjav65fl46YxneRz0xFpgGirCdtyb4VhgjLPsZfcAt06Cj0vLvEdNk4QYaTgnjkOQkjg0PcLhE93TZpyTs6rrxRGnX4UBnUkoAZVCKgjAXUiUDL3p4wrj32XKiqb4KJxNiRnZmWn8E_6F89LY34</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Lian, Pan</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210115</creationdate><title>Quaternion and fractional Fourier transform in higher dimension</title><author>Lian, Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-249c04ada46b7fd8c6856f71f97d05be5037d8c4f21ce848c987f6e7088907033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fractional Fourier transform</topic><topic>Hermite function</topic><topic>Paley-Wiener theorem</topic><topic>Quaternion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lian, Pan</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lian, Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quaternion and fractional Fourier transform in higher dimension</atitle><jtitle>Applied mathematics and computation</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>389</volume><spage>125585</spage><pages>125585-</pages><artnum>125585</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>Several quaternion Fourier transforms have received considerable attention in the last years. In this paper, based on the symplectic decomposition of quaternions, we prove that the Hermite functions in the spherical basis are the eigenfunctions of the QFTs. The relationship with Radon transform, the real and complex Paley-Wiener theorem, as well as the sampling formula for the 2-sided QFT are established in an easy way. Moreover, a two parameter fractional Fourier transform is introduced based on a new direct sum decomposition of the L2 space. The explicit formula and bound of the kernel are obtained. Compared with the Clifford-Fourier transform defined using eigenfunctions, the main adventure of this transform is that the integral kernel has a uniform bound for all dimensions.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2020.125585</doi></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2021-01, Vol.389, p.125585, Article 125585
issn 0096-3003
1873-5649
language eng
recordid cdi_crossref_primary_10_1016_j_amc_2020_125585
source Elsevier; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
subjects Fractional Fourier transform
Hermite function
Paley-Wiener theorem
Quaternion
title Quaternion and fractional Fourier transform in higher dimension
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quaternion%20and%20fractional%20Fourier%20transform%20in%20higher%20dimension&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Lian,%20Pan&rft.date=2021-01-15&rft.volume=389&rft.spage=125585&rft.pages=125585-&rft.artnum=125585&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2020.125585&rft_dat=%3Celsevier_cross%3ES0096300320305415%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-249c04ada46b7fd8c6856f71f97d05be5037d8c4f21ce848c987f6e7088907033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true