Loading…
Quaternion and fractional Fourier transform in higher dimension
Several quaternion Fourier transforms have received considerable attention in the last years. In this paper, based on the symplectic decomposition of quaternions, we prove that the Hermite functions in the spherical basis are the eigenfunctions of the QFTs. The relationship with Radon transform, the...
Saved in:
Published in: | Applied mathematics and computation 2021-01, Vol.389, p.125585, Article 125585 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c297t-249c04ada46b7fd8c6856f71f97d05be5037d8c4f21ce848c987f6e7088907033 |
---|---|
cites | cdi_FETCH-LOGICAL-c297t-249c04ada46b7fd8c6856f71f97d05be5037d8c4f21ce848c987f6e7088907033 |
container_end_page | |
container_issue | |
container_start_page | 125585 |
container_title | Applied mathematics and computation |
container_volume | 389 |
creator | Lian, Pan |
description | Several quaternion Fourier transforms have received considerable attention in the last years. In this paper, based on the symplectic decomposition of quaternions, we prove that the Hermite functions in the spherical basis are the eigenfunctions of the QFTs. The relationship with Radon transform, the real and complex Paley-Wiener theorem, as well as the sampling formula for the 2-sided QFT are established in an easy way. Moreover, a two parameter fractional Fourier transform is introduced based on a new direct sum decomposition of the L2 space. The explicit formula and bound of the kernel are obtained. Compared with the Clifford-Fourier transform defined using eigenfunctions, the main adventure of this transform is that the integral kernel has a uniform bound for all dimensions. |
doi_str_mv | 10.1016/j.amc.2020.125585 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2020_125585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300320305415</els_id><sourcerecordid>S0096300320305415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-249c04ada46b7fd8c6856f71f97d05be5037d8c4f21ce848c987f6e7088907033</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMouFYfwLt9gV0nu_nFC5Fiq1AQQa9Dmh-bpZuVZCv49qbUa6-Gc5gzzPkQusXQYsDsbmj1aNoOuqI7SgU9QxUWvG8oI_IcVQCSNT1Af4much4AgDNMKvTwdtCzSzFMsdbR1j5pMxeh9_VqOqTgUj0nHbOf0liHWO_C5654Nowu5rJ3jS683md38zcX6GP19L58bjav65fl46YxneRz0xFpgGirCdtyb4VhgjLPsZfcAt06Cj0vLvEdNk4QYaTgnjkOQkjg0PcLhE93TZpyTs6rrxRGnX4UBnUkoAZVCKgjAXUiUDL3p4wrj32XKiqb4KJxNiRnZmWn8E_6F89LY34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quaternion and fractional Fourier transform in higher dimension</title><source>Elsevier</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Lian, Pan</creator><creatorcontrib>Lian, Pan</creatorcontrib><description>Several quaternion Fourier transforms have received considerable attention in the last years. In this paper, based on the symplectic decomposition of quaternions, we prove that the Hermite functions in the spherical basis are the eigenfunctions of the QFTs. The relationship with Radon transform, the real and complex Paley-Wiener theorem, as well as the sampling formula for the 2-sided QFT are established in an easy way. Moreover, a two parameter fractional Fourier transform is introduced based on a new direct sum decomposition of the L2 space. The explicit formula and bound of the kernel are obtained. Compared with the Clifford-Fourier transform defined using eigenfunctions, the main adventure of this transform is that the integral kernel has a uniform bound for all dimensions.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2020.125585</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Fractional Fourier transform ; Hermite function ; Paley-Wiener theorem ; Quaternion</subject><ispartof>Applied mathematics and computation, 2021-01, Vol.389, p.125585, Article 125585</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-249c04ada46b7fd8c6856f71f97d05be5037d8c4f21ce848c987f6e7088907033</citedby><cites>FETCH-LOGICAL-c297t-249c04ada46b7fd8c6856f71f97d05be5037d8c4f21ce848c987f6e7088907033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300320305415$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3427,3562,27923,27924,45971,46002</link.rule.ids></links><search><creatorcontrib>Lian, Pan</creatorcontrib><title>Quaternion and fractional Fourier transform in higher dimension</title><title>Applied mathematics and computation</title><description>Several quaternion Fourier transforms have received considerable attention in the last years. In this paper, based on the symplectic decomposition of quaternions, we prove that the Hermite functions in the spherical basis are the eigenfunctions of the QFTs. The relationship with Radon transform, the real and complex Paley-Wiener theorem, as well as the sampling formula for the 2-sided QFT are established in an easy way. Moreover, a two parameter fractional Fourier transform is introduced based on a new direct sum decomposition of the L2 space. The explicit formula and bound of the kernel are obtained. Compared with the Clifford-Fourier transform defined using eigenfunctions, the main adventure of this transform is that the integral kernel has a uniform bound for all dimensions.</description><subject>Fractional Fourier transform</subject><subject>Hermite function</subject><subject>Paley-Wiener theorem</subject><subject>Quaternion</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhYMouFYfwLt9gV0nu_nFC5Fiq1AQQa9Dmh-bpZuVZCv49qbUa6-Gc5gzzPkQusXQYsDsbmj1aNoOuqI7SgU9QxUWvG8oI_IcVQCSNT1Af4much4AgDNMKvTwdtCzSzFMsdbR1j5pMxeh9_VqOqTgUj0nHbOf0liHWO_C5654Nowu5rJ3jS683md38zcX6GP19L58bjav65fl46YxneRz0xFpgGirCdtyb4VhgjLPsZfcAt06Cj0vLvEdNk4QYaTgnjkOQkjg0PcLhE93TZpyTs6rrxRGnX4UBnUkoAZVCKgjAXUiUDL3p4wrj32XKiqb4KJxNiRnZmWn8E_6F89LY34</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Lian, Pan</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210115</creationdate><title>Quaternion and fractional Fourier transform in higher dimension</title><author>Lian, Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-249c04ada46b7fd8c6856f71f97d05be5037d8c4f21ce848c987f6e7088907033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fractional Fourier transform</topic><topic>Hermite function</topic><topic>Paley-Wiener theorem</topic><topic>Quaternion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lian, Pan</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lian, Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quaternion and fractional Fourier transform in higher dimension</atitle><jtitle>Applied mathematics and computation</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>389</volume><spage>125585</spage><pages>125585-</pages><artnum>125585</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>Several quaternion Fourier transforms have received considerable attention in the last years. In this paper, based on the symplectic decomposition of quaternions, we prove that the Hermite functions in the spherical basis are the eigenfunctions of the QFTs. The relationship with Radon transform, the real and complex Paley-Wiener theorem, as well as the sampling formula for the 2-sided QFT are established in an easy way. Moreover, a two parameter fractional Fourier transform is introduced based on a new direct sum decomposition of the L2 space. The explicit formula and bound of the kernel are obtained. Compared with the Clifford-Fourier transform defined using eigenfunctions, the main adventure of this transform is that the integral kernel has a uniform bound for all dimensions.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2020.125585</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2021-01, Vol.389, p.125585, Article 125585 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_amc_2020_125585 |
source | Elsevier; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Fractional Fourier transform Hermite function Paley-Wiener theorem Quaternion |
title | Quaternion and fractional Fourier transform in higher dimension |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quaternion%20and%20fractional%20Fourier%20transform%20in%20higher%20dimension&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Lian,%20Pan&rft.date=2021-01-15&rft.volume=389&rft.spage=125585&rft.pages=125585-&rft.artnum=125585&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2020.125585&rft_dat=%3Celsevier_cross%3ES0096300320305415%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-249c04ada46b7fd8c6856f71f97d05be5037d8c4f21ce848c987f6e7088907033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |