Loading…

Discrete weierstrass transform in discrete hermitian clifford analysis

The classical Weierstrass transform is an isometric operator mapping elements of the weighted L2−space L2(R,exp(−x2/2)) to the Fock space. It has numereous applications in physics and applied mathematics. In this paper, we define an analogue version of this transform in discrete Hermitian Clifford a...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2021-02, Vol.391, p.125641, Article 125641
Main Authors: Massé, A., Sommen, F., De Ridder, H., Raeymaekers, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-8a62a5f2778a83dc1a386a493d6888aed846d8595a1377ce24c1d0928204096a3
cites cdi_FETCH-LOGICAL-c340t-8a62a5f2778a83dc1a386a493d6888aed846d8595a1377ce24c1d0928204096a3
container_end_page
container_issue
container_start_page 125641
container_title Applied mathematics and computation
container_volume 391
creator Massé, A.
Sommen, F.
De Ridder, H.
Raeymaekers, T.
description The classical Weierstrass transform is an isometric operator mapping elements of the weighted L2−space L2(R,exp(−x2/2)) to the Fock space. It has numereous applications in physics and applied mathematics. In this paper, we define an analogue version of this transform in discrete Hermitian Clifford analysis, where functions are defined on a grid rather than the continuous space. This new transform is based on the classical definition, in combination with a discrete version of the Gaussian function and discrete counterparts of the classical Hermite polynomials. Furthermore, a discrete Weierstrass space with appropriate inner product is constructed, for which the discrete Hermite polynomials form a basis. In this setting, we also investigate the behaviour of the discrete delta functions and check if they are elements of this newly defined Weierstrass space.
doi_str_mv 10.1016/j.amc.2020.125641
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2020_125641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300320305956</els_id><sourcerecordid>S0096300320305956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-8a62a5f2778a83dc1a386a493d6888aed846d8595a1377ce24c1d0928204096a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNv-ga2Tj81m8STVVqHgRc9hSGYxpbuVzKL035tSvXqZD2beYd5HiFsJCwnS3m0XOISFAlV61Vgjz8RMulbXpe7OxQygs7UG0JfiinkLAK2VZiZWj4lDpomqb0qUecrIXJU4cr_PQ5XGKv5tfFAe0pRwrMIu9WUcKxxxd-DE1-Kixx3TzW-ei_fV09vyud68rl-WD5s6aANT7dAqbHrVtg6djkGidhZNp6N1ziFFZ2x0Tdeg1G0bSJkgI3TKKTDFAOq5kKe7Ie-ZM_X-M6cB88FL8EcQfusLCH8E4U8giub-pKHy2Fcx6TkkGgPFlClMPu7TP-ofPq9mDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discrete weierstrass transform in discrete hermitian clifford analysis</title><source>ScienceDirect Journals</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Massé, A. ; Sommen, F. ; De Ridder, H. ; Raeymaekers, T.</creator><creatorcontrib>Massé, A. ; Sommen, F. ; De Ridder, H. ; Raeymaekers, T.</creatorcontrib><description>The classical Weierstrass transform is an isometric operator mapping elements of the weighted L2−space L2(R,exp(−x2/2)) to the Fock space. It has numereous applications in physics and applied mathematics. In this paper, we define an analogue version of this transform in discrete Hermitian Clifford analysis, where functions are defined on a grid rather than the continuous space. This new transform is based on the classical definition, in combination with a discrete version of the Gaussian function and discrete counterparts of the classical Hermite polynomials. Furthermore, a discrete Weierstrass space with appropriate inner product is constructed, for which the discrete Hermite polynomials form a basis. In this setting, we also investigate the behaviour of the discrete delta functions and check if they are elements of this newly defined Weierstrass space.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2020.125641</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Delta functions ; Discrete clifford analysis ; Hermite polynomials ; Weierstrass space ; Weierstrass transform</subject><ispartof>Applied mathematics and computation, 2021-02, Vol.391, p.125641, Article 125641</ispartof><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-8a62a5f2778a83dc1a386a493d6888aed846d8595a1377ce24c1d0928204096a3</citedby><cites>FETCH-LOGICAL-c340t-8a62a5f2778a83dc1a386a493d6888aed846d8595a1377ce24c1d0928204096a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300320305956$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3416,3551,27901,27902,45948,45978</link.rule.ids></links><search><creatorcontrib>Massé, A.</creatorcontrib><creatorcontrib>Sommen, F.</creatorcontrib><creatorcontrib>De Ridder, H.</creatorcontrib><creatorcontrib>Raeymaekers, T.</creatorcontrib><title>Discrete weierstrass transform in discrete hermitian clifford analysis</title><title>Applied mathematics and computation</title><description>The classical Weierstrass transform is an isometric operator mapping elements of the weighted L2−space L2(R,exp(−x2/2)) to the Fock space. It has numereous applications in physics and applied mathematics. In this paper, we define an analogue version of this transform in discrete Hermitian Clifford analysis, where functions are defined on a grid rather than the continuous space. This new transform is based on the classical definition, in combination with a discrete version of the Gaussian function and discrete counterparts of the classical Hermite polynomials. Furthermore, a discrete Weierstrass space with appropriate inner product is constructed, for which the discrete Hermite polynomials form a basis. In this setting, we also investigate the behaviour of the discrete delta functions and check if they are elements of this newly defined Weierstrass space.</description><subject>Delta functions</subject><subject>Discrete clifford analysis</subject><subject>Hermite polynomials</subject><subject>Weierstrass space</subject><subject>Weierstrass transform</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNv-ga2Tj81m8STVVqHgRc9hSGYxpbuVzKL035tSvXqZD2beYd5HiFsJCwnS3m0XOISFAlV61Vgjz8RMulbXpe7OxQygs7UG0JfiinkLAK2VZiZWj4lDpomqb0qUecrIXJU4cr_PQ5XGKv5tfFAe0pRwrMIu9WUcKxxxd-DE1-Kixx3TzW-ei_fV09vyud68rl-WD5s6aANT7dAqbHrVtg6djkGidhZNp6N1ziFFZ2x0Tdeg1G0bSJkgI3TKKTDFAOq5kKe7Ie-ZM_X-M6cB88FL8EcQfusLCH8E4U8giub-pKHy2Fcx6TkkGgPFlClMPu7TP-ofPq9mDQ</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Massé, A.</creator><creator>Sommen, F.</creator><creator>De Ridder, H.</creator><creator>Raeymaekers, T.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210215</creationdate><title>Discrete weierstrass transform in discrete hermitian clifford analysis</title><author>Massé, A. ; Sommen, F. ; De Ridder, H. ; Raeymaekers, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-8a62a5f2778a83dc1a386a493d6888aed846d8595a1377ce24c1d0928204096a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Delta functions</topic><topic>Discrete clifford analysis</topic><topic>Hermite polynomials</topic><topic>Weierstrass space</topic><topic>Weierstrass transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massé, A.</creatorcontrib><creatorcontrib>Sommen, F.</creatorcontrib><creatorcontrib>De Ridder, H.</creatorcontrib><creatorcontrib>Raeymaekers, T.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massé, A.</au><au>Sommen, F.</au><au>De Ridder, H.</au><au>Raeymaekers, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete weierstrass transform in discrete hermitian clifford analysis</atitle><jtitle>Applied mathematics and computation</jtitle><date>2021-02-15</date><risdate>2021</risdate><volume>391</volume><spage>125641</spage><pages>125641-</pages><artnum>125641</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>The classical Weierstrass transform is an isometric operator mapping elements of the weighted L2−space L2(R,exp(−x2/2)) to the Fock space. It has numereous applications in physics and applied mathematics. In this paper, we define an analogue version of this transform in discrete Hermitian Clifford analysis, where functions are defined on a grid rather than the continuous space. This new transform is based on the classical definition, in combination with a discrete version of the Gaussian function and discrete counterparts of the classical Hermite polynomials. Furthermore, a discrete Weierstrass space with appropriate inner product is constructed, for which the discrete Hermite polynomials form a basis. In this setting, we also investigate the behaviour of the discrete delta functions and check if they are elements of this newly defined Weierstrass space.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2020.125641</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2021-02, Vol.391, p.125641, Article 125641
issn 0096-3003
1873-5649
language eng
recordid cdi_crossref_primary_10_1016_j_amc_2020_125641
source ScienceDirect Journals; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
subjects Delta functions
Discrete clifford analysis
Hermite polynomials
Weierstrass space
Weierstrass transform
title Discrete weierstrass transform in discrete hermitian clifford analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20weierstrass%20transform%20in%20discrete%20hermitian%20clifford%20analysis&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Mass%C3%A9,%20A.&rft.date=2021-02-15&rft.volume=391&rft.spage=125641&rft.pages=125641-&rft.artnum=125641&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2020.125641&rft_dat=%3Celsevier_cross%3ES0096300320305956%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-8a62a5f2778a83dc1a386a493d6888aed846d8595a1377ce24c1d0928204096a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true