Loading…
Discrete weierstrass transform in discrete hermitian clifford analysis
The classical Weierstrass transform is an isometric operator mapping elements of the weighted L2−space L2(R,exp(−x2/2)) to the Fock space. It has numereous applications in physics and applied mathematics. In this paper, we define an analogue version of this transform in discrete Hermitian Clifford a...
Saved in:
Published in: | Applied mathematics and computation 2021-02, Vol.391, p.125641, Article 125641 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-8a62a5f2778a83dc1a386a493d6888aed846d8595a1377ce24c1d0928204096a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-8a62a5f2778a83dc1a386a493d6888aed846d8595a1377ce24c1d0928204096a3 |
container_end_page | |
container_issue | |
container_start_page | 125641 |
container_title | Applied mathematics and computation |
container_volume | 391 |
creator | Massé, A. Sommen, F. De Ridder, H. Raeymaekers, T. |
description | The classical Weierstrass transform is an isometric operator mapping elements of the weighted L2−space L2(R,exp(−x2/2)) to the Fock space. It has numereous applications in physics and applied mathematics. In this paper, we define an analogue version of this transform in discrete Hermitian Clifford analysis, where functions are defined on a grid rather than the continuous space. This new transform is based on the classical definition, in combination with a discrete version of the Gaussian function and discrete counterparts of the classical Hermite polynomials. Furthermore, a discrete Weierstrass space with appropriate inner product is constructed, for which the discrete Hermite polynomials form a basis. In this setting, we also investigate the behaviour of the discrete delta functions and check if they are elements of this newly defined Weierstrass space. |
doi_str_mv | 10.1016/j.amc.2020.125641 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2020_125641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300320305956</els_id><sourcerecordid>S0096300320305956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-8a62a5f2778a83dc1a386a493d6888aed846d8595a1377ce24c1d0928204096a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNv-ga2Tj81m8STVVqHgRc9hSGYxpbuVzKL035tSvXqZD2beYd5HiFsJCwnS3m0XOISFAlV61Vgjz8RMulbXpe7OxQygs7UG0JfiinkLAK2VZiZWj4lDpomqb0qUecrIXJU4cr_PQ5XGKv5tfFAe0pRwrMIu9WUcKxxxd-DE1-Kixx3TzW-ei_fV09vyud68rl-WD5s6aANT7dAqbHrVtg6djkGidhZNp6N1ziFFZ2x0Tdeg1G0bSJkgI3TKKTDFAOq5kKe7Ie-ZM_X-M6cB88FL8EcQfusLCH8E4U8giub-pKHy2Fcx6TkkGgPFlClMPu7TP-ofPq9mDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discrete weierstrass transform in discrete hermitian clifford analysis</title><source>ScienceDirect Journals</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Massé, A. ; Sommen, F. ; De Ridder, H. ; Raeymaekers, T.</creator><creatorcontrib>Massé, A. ; Sommen, F. ; De Ridder, H. ; Raeymaekers, T.</creatorcontrib><description>The classical Weierstrass transform is an isometric operator mapping elements of the weighted L2−space L2(R,exp(−x2/2)) to the Fock space. It has numereous applications in physics and applied mathematics. In this paper, we define an analogue version of this transform in discrete Hermitian Clifford analysis, where functions are defined on a grid rather than the continuous space. This new transform is based on the classical definition, in combination with a discrete version of the Gaussian function and discrete counterparts of the classical Hermite polynomials. Furthermore, a discrete Weierstrass space with appropriate inner product is constructed, for which the discrete Hermite polynomials form a basis. In this setting, we also investigate the behaviour of the discrete delta functions and check if they are elements of this newly defined Weierstrass space.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2020.125641</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Delta functions ; Discrete clifford analysis ; Hermite polynomials ; Weierstrass space ; Weierstrass transform</subject><ispartof>Applied mathematics and computation, 2021-02, Vol.391, p.125641, Article 125641</ispartof><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-8a62a5f2778a83dc1a386a493d6888aed846d8595a1377ce24c1d0928204096a3</citedby><cites>FETCH-LOGICAL-c340t-8a62a5f2778a83dc1a386a493d6888aed846d8595a1377ce24c1d0928204096a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300320305956$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3416,3551,27901,27902,45948,45978</link.rule.ids></links><search><creatorcontrib>Massé, A.</creatorcontrib><creatorcontrib>Sommen, F.</creatorcontrib><creatorcontrib>De Ridder, H.</creatorcontrib><creatorcontrib>Raeymaekers, T.</creatorcontrib><title>Discrete weierstrass transform in discrete hermitian clifford analysis</title><title>Applied mathematics and computation</title><description>The classical Weierstrass transform is an isometric operator mapping elements of the weighted L2−space L2(R,exp(−x2/2)) to the Fock space. It has numereous applications in physics and applied mathematics. In this paper, we define an analogue version of this transform in discrete Hermitian Clifford analysis, where functions are defined on a grid rather than the continuous space. This new transform is based on the classical definition, in combination with a discrete version of the Gaussian function and discrete counterparts of the classical Hermite polynomials. Furthermore, a discrete Weierstrass space with appropriate inner product is constructed, for which the discrete Hermite polynomials form a basis. In this setting, we also investigate the behaviour of the discrete delta functions and check if they are elements of this newly defined Weierstrass space.</description><subject>Delta functions</subject><subject>Discrete clifford analysis</subject><subject>Hermite polynomials</subject><subject>Weierstrass space</subject><subject>Weierstrass transform</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNv-ga2Tj81m8STVVqHgRc9hSGYxpbuVzKL035tSvXqZD2beYd5HiFsJCwnS3m0XOISFAlV61Vgjz8RMulbXpe7OxQygs7UG0JfiinkLAK2VZiZWj4lDpomqb0qUecrIXJU4cr_PQ5XGKv5tfFAe0pRwrMIu9WUcKxxxd-DE1-Kixx3TzW-ei_fV09vyud68rl-WD5s6aANT7dAqbHrVtg6djkGidhZNp6N1ziFFZ2x0Tdeg1G0bSJkgI3TKKTDFAOq5kKe7Ie-ZM_X-M6cB88FL8EcQfusLCH8E4U8giub-pKHy2Fcx6TkkGgPFlClMPu7TP-ofPq9mDQ</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Massé, A.</creator><creator>Sommen, F.</creator><creator>De Ridder, H.</creator><creator>Raeymaekers, T.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210215</creationdate><title>Discrete weierstrass transform in discrete hermitian clifford analysis</title><author>Massé, A. ; Sommen, F. ; De Ridder, H. ; Raeymaekers, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-8a62a5f2778a83dc1a386a493d6888aed846d8595a1377ce24c1d0928204096a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Delta functions</topic><topic>Discrete clifford analysis</topic><topic>Hermite polynomials</topic><topic>Weierstrass space</topic><topic>Weierstrass transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massé, A.</creatorcontrib><creatorcontrib>Sommen, F.</creatorcontrib><creatorcontrib>De Ridder, H.</creatorcontrib><creatorcontrib>Raeymaekers, T.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massé, A.</au><au>Sommen, F.</au><au>De Ridder, H.</au><au>Raeymaekers, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete weierstrass transform in discrete hermitian clifford analysis</atitle><jtitle>Applied mathematics and computation</jtitle><date>2021-02-15</date><risdate>2021</risdate><volume>391</volume><spage>125641</spage><pages>125641-</pages><artnum>125641</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>The classical Weierstrass transform is an isometric operator mapping elements of the weighted L2−space L2(R,exp(−x2/2)) to the Fock space. It has numereous applications in physics and applied mathematics. In this paper, we define an analogue version of this transform in discrete Hermitian Clifford analysis, where functions are defined on a grid rather than the continuous space. This new transform is based on the classical definition, in combination with a discrete version of the Gaussian function and discrete counterparts of the classical Hermite polynomials. Furthermore, a discrete Weierstrass space with appropriate inner product is constructed, for which the discrete Hermite polynomials form a basis. In this setting, we also investigate the behaviour of the discrete delta functions and check if they are elements of this newly defined Weierstrass space.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2020.125641</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2021-02, Vol.391, p.125641, Article 125641 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_amc_2020_125641 |
source | ScienceDirect Journals; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Delta functions Discrete clifford analysis Hermite polynomials Weierstrass space Weierstrass transform |
title | Discrete weierstrass transform in discrete hermitian clifford analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20weierstrass%20transform%20in%20discrete%20hermitian%20clifford%20analysis&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Mass%C3%A9,%20A.&rft.date=2021-02-15&rft.volume=391&rft.spage=125641&rft.pages=125641-&rft.artnum=125641&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2020.125641&rft_dat=%3Celsevier_cross%3ES0096300320305956%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-8a62a5f2778a83dc1a386a493d6888aed846d8595a1377ce24c1d0928204096a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |