Loading…

Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients

•It is proved that under some non-global Lipschitz conditions the SSBT scheme is convergent with order 0.5 in strong sense.•The presented SSBT scheme can preserve the exponential stability of the exact solution.•The technique we presented in Lemma 4.2 and Theorem 4.4 can be generalized for proving s...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2022-01, Vol.413, p.126437, Article 126437
Main Authors: Liu, Yufen, Cao, Wanrong, Li, Yuelin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-4e7f452876f573f9130c87fb462fa6aedf5bf8cbf188a1c55f5daeb06bf83e03
cites cdi_FETCH-LOGICAL-c297t-4e7f452876f573f9130c87fb462fa6aedf5bf8cbf188a1c55f5daeb06bf83e03
container_end_page
container_issue
container_start_page 126437
container_title Applied mathematics and computation
container_volume 413
creator Liu, Yufen
Cao, Wanrong
Li, Yuelin
description •It is proved that under some non-global Lipschitz conditions the SSBT scheme is convergent with order 0.5 in strong sense.•The presented SSBT scheme can preserve the exponential stability of the exact solution.•The technique we presented in Lemma 4.2 and Theorem 4.4 can be generalized for proving stability of other schemes. In this paper, a split-step balanced θ-method (SSBT) has been presented for solving stochastic differential equations (SDEs) under non-global Lipschitz conditions, where θ∈[0,1] is a parameter of the scheme. The moment boundedness and strong convergence of the numerical solution have been studied, and the convergence rate is 0.5. Moreover, under some conditions it is proved that the SSBT scheme can preserve the exponential mean-square stability of the exact solution when θ∈(1/2,1] for every step size h>0. Numerical examples verify the theoretical findings.
doi_str_mv 10.1016/j.amc.2021.126437
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2021_126437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300321005269</els_id><sourcerecordid>S0096300321005269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-4e7f452876f573f9130c87fb462fa6aedf5bf8cbf188a1c55f5daeb06bf83e03</originalsourceid><addsrcrecordid>eNp9kMFOAyEQhonRxFp9AG-8ACssC-zGk6m1mjTx0J68EJYFS7NdNkA19cl8Cp9Jmnr2NJPJfJN_PgBuCS4IJvxuW6idLkpckoKUvKLiDExILShivGrOwQTjhiOKMb0EVzFuMcaCk2oC3lZj7xKKyYywVb0atOngzzfambTxHbQ-wNXjPMJPlzZw8AN6733e6w9w6caoNy59Qe2H5Ia938fcGmuddmZI8RpcWNVHc_NXp2D9NF_PntHydfEye1giXTYiocoIW7GyFtwyQW1DKNa1sG3FS6u4Mp1lra11a0ldK6IZs6xTpsU8T6nBdArI6awOPsZgrByD26lwkATLoxu5ldmNPLqRJzeZuT8xJuf6cCbIeMycf3fB6CQ77_6hfwFi7G8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients</title><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>ScienceDirect: Computer Science Backfile</source><creator>Liu, Yufen ; Cao, Wanrong ; Li, Yuelin</creator><creatorcontrib>Liu, Yufen ; Cao, Wanrong ; Li, Yuelin</creatorcontrib><description>•It is proved that under some non-global Lipschitz conditions the SSBT scheme is convergent with order 0.5 in strong sense.•The presented SSBT scheme can preserve the exponential stability of the exact solution.•The technique we presented in Lemma 4.2 and Theorem 4.4 can be generalized for proving stability of other schemes. In this paper, a split-step balanced θ-method (SSBT) has been presented for solving stochastic differential equations (SDEs) under non-global Lipschitz conditions, where θ∈[0,1] is a parameter of the scheme. The moment boundedness and strong convergence of the numerical solution have been studied, and the convergence rate is 0.5. Moreover, under some conditions it is proved that the SSBT scheme can preserve the exponential mean-square stability of the exact solution when θ∈(1/2,1] for every step size h&gt;0. Numerical examples verify the theoretical findings.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2021.126437</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Exponential stability ; Mean-square contraction ; Nonlinear problems ; Strong convergence ; The balanced method</subject><ispartof>Applied mathematics and computation, 2022-01, Vol.413, p.126437, Article 126437</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-4e7f452876f573f9130c87fb462fa6aedf5bf8cbf188a1c55f5daeb06bf83e03</citedby><cites>FETCH-LOGICAL-c297t-4e7f452876f573f9130c87fb462fa6aedf5bf8cbf188a1c55f5daeb06bf83e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300321005269$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3415,3550,27903,27904,45951,45982</link.rule.ids></links><search><creatorcontrib>Liu, Yufen</creatorcontrib><creatorcontrib>Cao, Wanrong</creatorcontrib><creatorcontrib>Li, Yuelin</creatorcontrib><title>Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients</title><title>Applied mathematics and computation</title><description>•It is proved that under some non-global Lipschitz conditions the SSBT scheme is convergent with order 0.5 in strong sense.•The presented SSBT scheme can preserve the exponential stability of the exact solution.•The technique we presented in Lemma 4.2 and Theorem 4.4 can be generalized for proving stability of other schemes. In this paper, a split-step balanced θ-method (SSBT) has been presented for solving stochastic differential equations (SDEs) under non-global Lipschitz conditions, where θ∈[0,1] is a parameter of the scheme. The moment boundedness and strong convergence of the numerical solution have been studied, and the convergence rate is 0.5. Moreover, under some conditions it is proved that the SSBT scheme can preserve the exponential mean-square stability of the exact solution when θ∈(1/2,1] for every step size h&gt;0. Numerical examples verify the theoretical findings.</description><subject>Exponential stability</subject><subject>Mean-square contraction</subject><subject>Nonlinear problems</subject><subject>Strong convergence</subject><subject>The balanced method</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAyEQhonRxFp9AG-8ACssC-zGk6m1mjTx0J68EJYFS7NdNkA19cl8Cp9Jmnr2NJPJfJN_PgBuCS4IJvxuW6idLkpckoKUvKLiDExILShivGrOwQTjhiOKMb0EVzFuMcaCk2oC3lZj7xKKyYywVb0atOngzzfambTxHbQ-wNXjPMJPlzZw8AN6733e6w9w6caoNy59Qe2H5Ia938fcGmuddmZI8RpcWNVHc_NXp2D9NF_PntHydfEye1giXTYiocoIW7GyFtwyQW1DKNa1sG3FS6u4Mp1lra11a0ldK6IZs6xTpsU8T6nBdArI6awOPsZgrByD26lwkATLoxu5ldmNPLqRJzeZuT8xJuf6cCbIeMycf3fB6CQ77_6hfwFi7G8I</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Liu, Yufen</creator><creator>Cao, Wanrong</creator><creator>Li, Yuelin</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220115</creationdate><title>Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients</title><author>Liu, Yufen ; Cao, Wanrong ; Li, Yuelin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-4e7f452876f573f9130c87fb462fa6aedf5bf8cbf188a1c55f5daeb06bf83e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Exponential stability</topic><topic>Mean-square contraction</topic><topic>Nonlinear problems</topic><topic>Strong convergence</topic><topic>The balanced method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yufen</creatorcontrib><creatorcontrib>Cao, Wanrong</creatorcontrib><creatorcontrib>Li, Yuelin</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yufen</au><au>Cao, Wanrong</au><au>Li, Yuelin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients</atitle><jtitle>Applied mathematics and computation</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>413</volume><spage>126437</spage><pages>126437-</pages><artnum>126437</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>•It is proved that under some non-global Lipschitz conditions the SSBT scheme is convergent with order 0.5 in strong sense.•The presented SSBT scheme can preserve the exponential stability of the exact solution.•The technique we presented in Lemma 4.2 and Theorem 4.4 can be generalized for proving stability of other schemes. In this paper, a split-step balanced θ-method (SSBT) has been presented for solving stochastic differential equations (SDEs) under non-global Lipschitz conditions, where θ∈[0,1] is a parameter of the scheme. The moment boundedness and strong convergence of the numerical solution have been studied, and the convergence rate is 0.5. Moreover, under some conditions it is proved that the SSBT scheme can preserve the exponential mean-square stability of the exact solution when θ∈(1/2,1] for every step size h&gt;0. Numerical examples verify the theoretical findings.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2021.126437</doi></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2022-01, Vol.413, p.126437, Article 126437
issn 0096-3003
1873-5649
language eng
recordid cdi_crossref_primary_10_1016_j_amc_2021_126437
source ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT]; ScienceDirect: Computer Science Backfile
subjects Exponential stability
Mean-square contraction
Nonlinear problems
Strong convergence
The balanced method
title Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Split-step%20balanced%20%CE%B8-method%20for%20SDEs%20with%20non-globally%20Lipschitz%20continuous%20coefficients&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Liu,%20Yufen&rft.date=2022-01-15&rft.volume=413&rft.spage=126437&rft.pages=126437-&rft.artnum=126437&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2021.126437&rft_dat=%3Celsevier_cross%3ES0096300321005269%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-4e7f452876f573f9130c87fb462fa6aedf5bf8cbf188a1c55f5daeb06bf83e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true