Loading…
Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients
•It is proved that under some non-global Lipschitz conditions the SSBT scheme is convergent with order 0.5 in strong sense.•The presented SSBT scheme can preserve the exponential stability of the exact solution.•The technique we presented in Lemma 4.2 and Theorem 4.4 can be generalized for proving s...
Saved in:
Published in: | Applied mathematics and computation 2022-01, Vol.413, p.126437, Article 126437 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c297t-4e7f452876f573f9130c87fb462fa6aedf5bf8cbf188a1c55f5daeb06bf83e03 |
---|---|
cites | cdi_FETCH-LOGICAL-c297t-4e7f452876f573f9130c87fb462fa6aedf5bf8cbf188a1c55f5daeb06bf83e03 |
container_end_page | |
container_issue | |
container_start_page | 126437 |
container_title | Applied mathematics and computation |
container_volume | 413 |
creator | Liu, Yufen Cao, Wanrong Li, Yuelin |
description | •It is proved that under some non-global Lipschitz conditions the SSBT scheme is convergent with order 0.5 in strong sense.•The presented SSBT scheme can preserve the exponential stability of the exact solution.•The technique we presented in Lemma 4.2 and Theorem 4.4 can be generalized for proving stability of other schemes.
In this paper, a split-step balanced θ-method (SSBT) has been presented for solving stochastic differential equations (SDEs) under non-global Lipschitz conditions, where θ∈[0,1] is a parameter of the scheme. The moment boundedness and strong convergence of the numerical solution have been studied, and the convergence rate is 0.5. Moreover, under some conditions it is proved that the SSBT scheme can preserve the exponential mean-square stability of the exact solution when θ∈(1/2,1] for every step size h>0. Numerical examples verify the theoretical findings. |
doi_str_mv | 10.1016/j.amc.2021.126437 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2021_126437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300321005269</els_id><sourcerecordid>S0096300321005269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-4e7f452876f573f9130c87fb462fa6aedf5bf8cbf188a1c55f5daeb06bf83e03</originalsourceid><addsrcrecordid>eNp9kMFOAyEQhonRxFp9AG-8ACssC-zGk6m1mjTx0J68EJYFS7NdNkA19cl8Cp9Jmnr2NJPJfJN_PgBuCS4IJvxuW6idLkpckoKUvKLiDExILShivGrOwQTjhiOKMb0EVzFuMcaCk2oC3lZj7xKKyYywVb0atOngzzfambTxHbQ-wNXjPMJPlzZw8AN6733e6w9w6caoNy59Qe2H5Ia938fcGmuddmZI8RpcWNVHc_NXp2D9NF_PntHydfEye1giXTYiocoIW7GyFtwyQW1DKNa1sG3FS6u4Mp1lra11a0ldK6IZs6xTpsU8T6nBdArI6awOPsZgrByD26lwkATLoxu5ldmNPLqRJzeZuT8xJuf6cCbIeMycf3fB6CQ77_6hfwFi7G8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients</title><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>ScienceDirect: Computer Science Backfile</source><creator>Liu, Yufen ; Cao, Wanrong ; Li, Yuelin</creator><creatorcontrib>Liu, Yufen ; Cao, Wanrong ; Li, Yuelin</creatorcontrib><description>•It is proved that under some non-global Lipschitz conditions the SSBT scheme is convergent with order 0.5 in strong sense.•The presented SSBT scheme can preserve the exponential stability of the exact solution.•The technique we presented in Lemma 4.2 and Theorem 4.4 can be generalized for proving stability of other schemes.
In this paper, a split-step balanced θ-method (SSBT) has been presented for solving stochastic differential equations (SDEs) under non-global Lipschitz conditions, where θ∈[0,1] is a parameter of the scheme. The moment boundedness and strong convergence of the numerical solution have been studied, and the convergence rate is 0.5. Moreover, under some conditions it is proved that the SSBT scheme can preserve the exponential mean-square stability of the exact solution when θ∈(1/2,1] for every step size h>0. Numerical examples verify the theoretical findings.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2021.126437</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Exponential stability ; Mean-square contraction ; Nonlinear problems ; Strong convergence ; The balanced method</subject><ispartof>Applied mathematics and computation, 2022-01, Vol.413, p.126437, Article 126437</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-4e7f452876f573f9130c87fb462fa6aedf5bf8cbf188a1c55f5daeb06bf83e03</citedby><cites>FETCH-LOGICAL-c297t-4e7f452876f573f9130c87fb462fa6aedf5bf8cbf188a1c55f5daeb06bf83e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300321005269$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3415,3550,27903,27904,45951,45982</link.rule.ids></links><search><creatorcontrib>Liu, Yufen</creatorcontrib><creatorcontrib>Cao, Wanrong</creatorcontrib><creatorcontrib>Li, Yuelin</creatorcontrib><title>Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients</title><title>Applied mathematics and computation</title><description>•It is proved that under some non-global Lipschitz conditions the SSBT scheme is convergent with order 0.5 in strong sense.•The presented SSBT scheme can preserve the exponential stability of the exact solution.•The technique we presented in Lemma 4.2 and Theorem 4.4 can be generalized for proving stability of other schemes.
In this paper, a split-step balanced θ-method (SSBT) has been presented for solving stochastic differential equations (SDEs) under non-global Lipschitz conditions, where θ∈[0,1] is a parameter of the scheme. The moment boundedness and strong convergence of the numerical solution have been studied, and the convergence rate is 0.5. Moreover, under some conditions it is proved that the SSBT scheme can preserve the exponential mean-square stability of the exact solution when θ∈(1/2,1] for every step size h>0. Numerical examples verify the theoretical findings.</description><subject>Exponential stability</subject><subject>Mean-square contraction</subject><subject>Nonlinear problems</subject><subject>Strong convergence</subject><subject>The balanced method</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAyEQhonRxFp9AG-8ACssC-zGk6m1mjTx0J68EJYFS7NdNkA19cl8Cp9Jmnr2NJPJfJN_PgBuCS4IJvxuW6idLkpckoKUvKLiDExILShivGrOwQTjhiOKMb0EVzFuMcaCk2oC3lZj7xKKyYywVb0atOngzzfambTxHbQ-wNXjPMJPlzZw8AN6733e6w9w6caoNy59Qe2H5Ia938fcGmuddmZI8RpcWNVHc_NXp2D9NF_PntHydfEye1giXTYiocoIW7GyFtwyQW1DKNa1sG3FS6u4Mp1lra11a0ldK6IZs6xTpsU8T6nBdArI6awOPsZgrByD26lwkATLoxu5ldmNPLqRJzeZuT8xJuf6cCbIeMycf3fB6CQ77_6hfwFi7G8I</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Liu, Yufen</creator><creator>Cao, Wanrong</creator><creator>Li, Yuelin</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220115</creationdate><title>Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients</title><author>Liu, Yufen ; Cao, Wanrong ; Li, Yuelin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-4e7f452876f573f9130c87fb462fa6aedf5bf8cbf188a1c55f5daeb06bf83e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Exponential stability</topic><topic>Mean-square contraction</topic><topic>Nonlinear problems</topic><topic>Strong convergence</topic><topic>The balanced method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yufen</creatorcontrib><creatorcontrib>Cao, Wanrong</creatorcontrib><creatorcontrib>Li, Yuelin</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yufen</au><au>Cao, Wanrong</au><au>Li, Yuelin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients</atitle><jtitle>Applied mathematics and computation</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>413</volume><spage>126437</spage><pages>126437-</pages><artnum>126437</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>•It is proved that under some non-global Lipschitz conditions the SSBT scheme is convergent with order 0.5 in strong sense.•The presented SSBT scheme can preserve the exponential stability of the exact solution.•The technique we presented in Lemma 4.2 and Theorem 4.4 can be generalized for proving stability of other schemes.
In this paper, a split-step balanced θ-method (SSBT) has been presented for solving stochastic differential equations (SDEs) under non-global Lipschitz conditions, where θ∈[0,1] is a parameter of the scheme. The moment boundedness and strong convergence of the numerical solution have been studied, and the convergence rate is 0.5. Moreover, under some conditions it is proved that the SSBT scheme can preserve the exponential mean-square stability of the exact solution when θ∈(1/2,1] for every step size h>0. Numerical examples verify the theoretical findings.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2021.126437</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2022-01, Vol.413, p.126437, Article 126437 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_amc_2021_126437 |
source | ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT]; ScienceDirect: Computer Science Backfile |
subjects | Exponential stability Mean-square contraction Nonlinear problems Strong convergence The balanced method |
title | Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Split-step%20balanced%20%CE%B8-method%20for%20SDEs%20with%20non-globally%20Lipschitz%20continuous%20coefficients&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Liu,%20Yufen&rft.date=2022-01-15&rft.volume=413&rft.spage=126437&rft.pages=126437-&rft.artnum=126437&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2021.126437&rft_dat=%3Celsevier_cross%3ES0096300321005269%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-4e7f452876f573f9130c87fb462fa6aedf5bf8cbf188a1c55f5daeb06bf83e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |