Loading…

Density-pressure IBVP: Numerical analysis, simulation and cell dynamics in a colonic crypt

•Numerical method for convection-diffusion-reaction equations with mixed derivatives.•Semi-discrete finite difference method considered in nonuniform rectangular grid.•Proof of Stability and Second convergence order with respect to a discrete H1-norm.•Application of the method for simulating the cel...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2022-07, Vol.424, p.127037, Article 127037
Main Authors: Campos, G.C.M., Ferreira, J.A., Romanazzi, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c249t-f4807bd21b73b9d2b69c85f3cc5d5509b47f5baeea13910c235bcd6041ff58863
container_end_page
container_issue
container_start_page 127037
container_title Applied mathematics and computation
container_volume 424
creator Campos, G.C.M.
Ferreira, J.A.
Romanazzi, G.
description •Numerical method for convection-diffusion-reaction equations with mixed derivatives.•Semi-discrete finite difference method considered in nonuniform rectangular grid.•Proof of Stability and Second convergence order with respect to a discrete H1-norm.•Application of the method for simulating the cell dynamics in a colonic crypt. This paper proposes a finite difference method for a differential-algebraic system that couples an elliptic equation with a convection-diffusion-reaction equation with mixed derivatives. Herein the parabolic equation depends on the gradient of the solution of the elliptic equation. If the numerical approximation for this gradient presents lower accuracy then the numerical approximations for the solution of the parabolic equation can be deteriorated. In order to get a second order approximation for the solution of the parabolic equation, the challenges that we have to face are the construction of the right discretizations of the elliptic and parabolic equations that lead to a second order approximation for the gradient as well as the development of the numerical analysis of the proposed method. The differential system analysed can be used to describe the cell density and pressure dynamics in colonic crypts. Numerical simulations of cell dynamics in a crypt of the human colon during the formation of a micro-adenoma are presented.
doi_str_mv 10.1016/j.amc.2022.127037
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2022_127037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300322001230</els_id><sourcerecordid>S0096300322001230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-f4807bd21b73b9d2b69c85f3cc5d5509b47f5baeea13910c235bcd6041ff58863</originalsourceid><addsrcrecordid>eNp9kMtKxDAYhYMoWEcfwF0ewNY_SdOLrnS8DQzqQl24CcmfFDL0MiQdoW9vh3Ht6sCB73D4CLlkkDFgxfUm0x1mHDjPGC9BlEckYVUpUlnk9TFJAOoiFQDilJzFuAGAsmB5Qr4fXB_9OKXb4GLcBUdX91_vN_R117ngUbdU97qdoo9XNPpu1-rRD_1cWoqubamdet15jNTPJcWhHXqPFMO0Hc_JSaPb6C7-ckE-nx4_li_p-u15tbxbp8jzekybvILSWM5MKUxtuSlqrGQjEKWVEmqTl4002jnNRM0AuZAGbQE5axpZVYVYEHbYxTDEGFyjtsF3OkyKgdrLURs1y1F7OeogZ2ZuD4ybj_14F1RE73p01geHo7KD_4f-BSxObT0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Density-pressure IBVP: Numerical analysis, simulation and cell dynamics in a colonic crypt</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Campos, G.C.M. ; Ferreira, J.A. ; Romanazzi, G.</creator><creatorcontrib>Campos, G.C.M. ; Ferreira, J.A. ; Romanazzi, G.</creatorcontrib><description>•Numerical method for convection-diffusion-reaction equations with mixed derivatives.•Semi-discrete finite difference method considered in nonuniform rectangular grid.•Proof of Stability and Second convergence order with respect to a discrete H1-norm.•Application of the method for simulating the cell dynamics in a colonic crypt. This paper proposes a finite difference method for a differential-algebraic system that couples an elliptic equation with a convection-diffusion-reaction equation with mixed derivatives. Herein the parabolic equation depends on the gradient of the solution of the elliptic equation. If the numerical approximation for this gradient presents lower accuracy then the numerical approximations for the solution of the parabolic equation can be deteriorated. In order to get a second order approximation for the solution of the parabolic equation, the challenges that we have to face are the construction of the right discretizations of the elliptic and parabolic equations that lead to a second order approximation for the gradient as well as the development of the numerical analysis of the proposed method. The differential system analysed can be used to describe the cell density and pressure dynamics in colonic crypts. Numerical simulations of cell dynamics in a crypt of the human colon during the formation of a micro-adenoma are presented.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2022.127037</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Cell dynamics ; Colonic crypt ; Coupled system of elliptic and parabolic equations ; Finite difference methods ; Mixed derivatives</subject><ispartof>Applied mathematics and computation, 2022-07, Vol.424, p.127037, Article 127037</ispartof><rights>2022 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-f4807bd21b73b9d2b69c85f3cc5d5509b47f5baeea13910c235bcd6041ff58863</cites><orcidid>0000-0002-5226-2905 ; 0000-0002-4486-7840 ; 0000-0003-0726-4669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300322001230$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3564,27924,27925,45972,46003</link.rule.ids></links><search><creatorcontrib>Campos, G.C.M.</creatorcontrib><creatorcontrib>Ferreira, J.A.</creatorcontrib><creatorcontrib>Romanazzi, G.</creatorcontrib><title>Density-pressure IBVP: Numerical analysis, simulation and cell dynamics in a colonic crypt</title><title>Applied mathematics and computation</title><description>•Numerical method for convection-diffusion-reaction equations with mixed derivatives.•Semi-discrete finite difference method considered in nonuniform rectangular grid.•Proof of Stability and Second convergence order with respect to a discrete H1-norm.•Application of the method for simulating the cell dynamics in a colonic crypt. This paper proposes a finite difference method for a differential-algebraic system that couples an elliptic equation with a convection-diffusion-reaction equation with mixed derivatives. Herein the parabolic equation depends on the gradient of the solution of the elliptic equation. If the numerical approximation for this gradient presents lower accuracy then the numerical approximations for the solution of the parabolic equation can be deteriorated. In order to get a second order approximation for the solution of the parabolic equation, the challenges that we have to face are the construction of the right discretizations of the elliptic and parabolic equations that lead to a second order approximation for the gradient as well as the development of the numerical analysis of the proposed method. The differential system analysed can be used to describe the cell density and pressure dynamics in colonic crypts. Numerical simulations of cell dynamics in a crypt of the human colon during the formation of a micro-adenoma are presented.</description><subject>Cell dynamics</subject><subject>Colonic crypt</subject><subject>Coupled system of elliptic and parabolic equations</subject><subject>Finite difference methods</subject><subject>Mixed derivatives</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAYhYMoWEcfwF0ewNY_SdOLrnS8DQzqQl24CcmfFDL0MiQdoW9vh3Ht6sCB73D4CLlkkDFgxfUm0x1mHDjPGC9BlEckYVUpUlnk9TFJAOoiFQDilJzFuAGAsmB5Qr4fXB_9OKXb4GLcBUdX91_vN_R117ngUbdU97qdoo9XNPpu1-rRD_1cWoqubamdet15jNTPJcWhHXqPFMO0Hc_JSaPb6C7-ckE-nx4_li_p-u15tbxbp8jzekybvILSWM5MKUxtuSlqrGQjEKWVEmqTl4002jnNRM0AuZAGbQE5axpZVYVYEHbYxTDEGFyjtsF3OkyKgdrLURs1y1F7OeogZ2ZuD4ybj_14F1RE73p01geHo7KD_4f-BSxObT0</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Campos, G.C.M.</creator><creator>Ferreira, J.A.</creator><creator>Romanazzi, G.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5226-2905</orcidid><orcidid>https://orcid.org/0000-0002-4486-7840</orcidid><orcidid>https://orcid.org/0000-0003-0726-4669</orcidid></search><sort><creationdate>20220701</creationdate><title>Density-pressure IBVP: Numerical analysis, simulation and cell dynamics in a colonic crypt</title><author>Campos, G.C.M. ; Ferreira, J.A. ; Romanazzi, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-f4807bd21b73b9d2b69c85f3cc5d5509b47f5baeea13910c235bcd6041ff58863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cell dynamics</topic><topic>Colonic crypt</topic><topic>Coupled system of elliptic and parabolic equations</topic><topic>Finite difference methods</topic><topic>Mixed derivatives</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campos, G.C.M.</creatorcontrib><creatorcontrib>Ferreira, J.A.</creatorcontrib><creatorcontrib>Romanazzi, G.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campos, G.C.M.</au><au>Ferreira, J.A.</au><au>Romanazzi, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density-pressure IBVP: Numerical analysis, simulation and cell dynamics in a colonic crypt</atitle><jtitle>Applied mathematics and computation</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>424</volume><spage>127037</spage><pages>127037-</pages><artnum>127037</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>•Numerical method for convection-diffusion-reaction equations with mixed derivatives.•Semi-discrete finite difference method considered in nonuniform rectangular grid.•Proof of Stability and Second convergence order with respect to a discrete H1-norm.•Application of the method for simulating the cell dynamics in a colonic crypt. This paper proposes a finite difference method for a differential-algebraic system that couples an elliptic equation with a convection-diffusion-reaction equation with mixed derivatives. Herein the parabolic equation depends on the gradient of the solution of the elliptic equation. If the numerical approximation for this gradient presents lower accuracy then the numerical approximations for the solution of the parabolic equation can be deteriorated. In order to get a second order approximation for the solution of the parabolic equation, the challenges that we have to face are the construction of the right discretizations of the elliptic and parabolic equations that lead to a second order approximation for the gradient as well as the development of the numerical analysis of the proposed method. The differential system analysed can be used to describe the cell density and pressure dynamics in colonic crypts. Numerical simulations of cell dynamics in a crypt of the human colon during the formation of a micro-adenoma are presented.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2022.127037</doi><orcidid>https://orcid.org/0000-0002-5226-2905</orcidid><orcidid>https://orcid.org/0000-0002-4486-7840</orcidid><orcidid>https://orcid.org/0000-0003-0726-4669</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2022-07, Vol.424, p.127037, Article 127037
issn 0096-3003
1873-5649
language eng
recordid cdi_crossref_primary_10_1016_j_amc_2022_127037
source ScienceDirect Freedom Collection; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
subjects Cell dynamics
Colonic crypt
Coupled system of elliptic and parabolic equations
Finite difference methods
Mixed derivatives
title Density-pressure IBVP: Numerical analysis, simulation and cell dynamics in a colonic crypt
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density-pressure%20IBVP:%20Numerical%20analysis,%20simulation%20and%20cell%20dynamics%20in%20a%20colonic%20crypt&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Campos,%20G.C.M.&rft.date=2022-07-01&rft.volume=424&rft.spage=127037&rft.pages=127037-&rft.artnum=127037&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2022.127037&rft_dat=%3Celsevier_cross%3ES0096300322001230%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-f4807bd21b73b9d2b69c85f3cc5d5509b47f5baeea13910c235bcd6041ff58863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true