Loading…

Note on the effect of grad-div stabilization on calculating drag and lift coefficients

In recent years, grad-div stabilization has become a popular technique for improving the mass conservation of a solution to the incompressible Navier-Stokes equations (NSE). Grad-div stabilization can be easily implemented in any code that already uses the very common Taylor-Hood finite elements. In...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2022-12, Vol.434, p.127434, Article 127434
Main Authors: Batugedara, Yasasya, Schwiebert, Kyle J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, grad-div stabilization has become a popular technique for improving the mass conservation of a solution to the incompressible Navier-Stokes equations (NSE). Grad-div stabilization can be easily implemented in any code that already uses the very common Taylor-Hood finite elements. In this paper we do a close review of the grad-div stabilized and modular grad-div stabilized NSE applied to a well-known benchmark problem: 2D flow around a cylindrical obstacle. We show that using current methods grad-div stabilization can change the calculated drag and lift coefficients. We will then suggest a remedy for the given test problem and verify our results by showing the grad-div parameters agree with the reference values and those calculated using Scott-Vogelius finite elements.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2022.127434