Loading…
Note on the effect of grad-div stabilization on calculating drag and lift coefficients
In recent years, grad-div stabilization has become a popular technique for improving the mass conservation of a solution to the incompressible Navier-Stokes equations (NSE). Grad-div stabilization can be easily implemented in any code that already uses the very common Taylor-Hood finite elements. In...
Saved in:
Published in: | Applied mathematics and computation 2022-12, Vol.434, p.127434, Article 127434 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, grad-div stabilization has become a popular technique for improving the mass conservation of a solution to the incompressible Navier-Stokes equations (NSE). Grad-div stabilization can be easily implemented in any code that already uses the very common Taylor-Hood finite elements. In this paper we do a close review of the grad-div stabilized and modular grad-div stabilized NSE applied to a well-known benchmark problem: 2D flow around a cylindrical obstacle. We show that using current methods grad-div stabilization can change the calculated drag and lift coefficients. We will then suggest a remedy for the given test problem and verify our results by showing the grad-div parameters agree with the reference values and those calculated using Scott-Vogelius finite elements. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2022.127434 |