Loading…
An efficient invariant-region-preserving central scheme for hyperbolic conservation laws
•New second-order accurate invariant-region-preserving(IRP) unstaggered-central scheme for the hyperbolic conservation laws.•Extended IRP limiter, which is applied to reconstructed slopes such that it remains effective in the vicinity of the active cell.•Proof of stability, which is so called frowar...
Saved in:
Published in: | Applied mathematics and computation 2023-01, Vol.436, p.127500, Article 127500 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c227t-8b0d19a9ca910dd4da7e8410e0e4ec8895b144128c3d86007ea98999ab1762203 |
---|---|
cites | cdi_FETCH-LOGICAL-c227t-8b0d19a9ca910dd4da7e8410e0e4ec8895b144128c3d86007ea98999ab1762203 |
container_end_page | |
container_issue | |
container_start_page | 127500 |
container_title | Applied mathematics and computation |
container_volume | 436 |
creator | Yan, Ruifang Tong, Wei Chen, Guoxian |
description | •New second-order accurate invariant-region-preserving(IRP) unstaggered-central scheme for the hyperbolic conservation laws.•Extended IRP limiter, which is applied to reconstructed slopes such that it remains effective in the vicinity of the active cell.•Proof of stability, which is so called froward-backward splitting, is adaptable for scalar equations and general nonlinear systems.•More relaxed CFL condition implies the larger time step.
Due to the Riemann solver free and avoiding characteristic decomposition, the central scheme is a simple and efficient tool for numerical solution of hyperbolic conservation laws (Nessyahu and Tadmor, J. Comput. Phys., 87(2):314-329,1990). But the theoretical Courant number CFL in order to preserve the invariant region of the numerical solution is very small, and there is lack of the stability proof for nonlinear systems. By adding a limiter on the reconstructed slope without requiring clipping condition, we enlarge the value of the CFL to admit larger time step. Then a widely applicable stability proof, which is suitable for general hyperbolic conservation laws, is given by writing the evolved solution as convex combinations in terms of the Lax-Friedrichs scheme. Some numerical experiments are carried out to verify the robustness. |
doi_str_mv | 10.1016/j.amc.2022.127500 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2022_127500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300322005744</els_id><sourcerecordid>S0096300322005744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-8b0d19a9ca910dd4da7e8410e0e4ec8895b144128c3d86007ea98999ab1762203</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKsf4C4_kPElk84kuCpFrVBwo-AuZJI3bco0U5Kh0r93hrp29Tb3XO47hDxyKDjw6mlf2IMrBAhRcFEvAK7IjKu6ZItK6msyA9AVKwHKW3KX8x4A6orLGfleRoptG1zAONAQTzYFGweWcBv6yI4JM6ZTiFvqxkCyHc1uhwekbZ_o7nzE1PRdcNT1cQraYaRoZ3_yPblpbZfx4e_Oydfry-dqzTYfb--r5YY5IeqBqQY811Y7qzl4L72tUUkOCCjRKaUXDZeSC-VKr6pxNVqttNa24XUlBJRzwi-9LvU5J2zNMYWDTWfDwUxqzN6MasykxlzUjMzzhcFx2ClgMnn636EPCd1gfB_-oX8BLnZtHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An efficient invariant-region-preserving central scheme for hyperbolic conservation laws</title><source>ScienceDirect: Mathematics Backfile</source><source>Elsevier</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><creator>Yan, Ruifang ; Tong, Wei ; Chen, Guoxian</creator><creatorcontrib>Yan, Ruifang ; Tong, Wei ; Chen, Guoxian</creatorcontrib><description>•New second-order accurate invariant-region-preserving(IRP) unstaggered-central scheme for the hyperbolic conservation laws.•Extended IRP limiter, which is applied to reconstructed slopes such that it remains effective in the vicinity of the active cell.•Proof of stability, which is so called froward-backward splitting, is adaptable for scalar equations and general nonlinear systems.•More relaxed CFL condition implies the larger time step.
Due to the Riemann solver free and avoiding characteristic decomposition, the central scheme is a simple and efficient tool for numerical solution of hyperbolic conservation laws (Nessyahu and Tadmor, J. Comput. Phys., 87(2):314-329,1990). But the theoretical Courant number CFL in order to preserve the invariant region of the numerical solution is very small, and there is lack of the stability proof for nonlinear systems. By adding a limiter on the reconstructed slope without requiring clipping condition, we enlarge the value of the CFL to admit larger time step. Then a widely applicable stability proof, which is suitable for general hyperbolic conservation laws, is given by writing the evolved solution as convex combinations in terms of the Lax-Friedrichs scheme. Some numerical experiments are carried out to verify the robustness.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2022.127500</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Forward-backward splitting ; Hyperbolic conservation laws ; Invariant-region-preserving principle ; Minimum-maximum-preserving principle ; Positivity-preserving principle ; Unstaggered-central scheme</subject><ispartof>Applied mathematics and computation, 2023-01, Vol.436, p.127500, Article 127500</ispartof><rights>2022 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-8b0d19a9ca910dd4da7e8410e0e4ec8895b144128c3d86007ea98999ab1762203</citedby><cites>FETCH-LOGICAL-c227t-8b0d19a9ca910dd4da7e8410e0e4ec8895b144128c3d86007ea98999ab1762203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300322005744$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3416,3551,27901,27902,45948,45978</link.rule.ids></links><search><creatorcontrib>Yan, Ruifang</creatorcontrib><creatorcontrib>Tong, Wei</creatorcontrib><creatorcontrib>Chen, Guoxian</creatorcontrib><title>An efficient invariant-region-preserving central scheme for hyperbolic conservation laws</title><title>Applied mathematics and computation</title><description>•New second-order accurate invariant-region-preserving(IRP) unstaggered-central scheme for the hyperbolic conservation laws.•Extended IRP limiter, which is applied to reconstructed slopes such that it remains effective in the vicinity of the active cell.•Proof of stability, which is so called froward-backward splitting, is adaptable for scalar equations and general nonlinear systems.•More relaxed CFL condition implies the larger time step.
Due to the Riemann solver free and avoiding characteristic decomposition, the central scheme is a simple and efficient tool for numerical solution of hyperbolic conservation laws (Nessyahu and Tadmor, J. Comput. Phys., 87(2):314-329,1990). But the theoretical Courant number CFL in order to preserve the invariant region of the numerical solution is very small, and there is lack of the stability proof for nonlinear systems. By adding a limiter on the reconstructed slope without requiring clipping condition, we enlarge the value of the CFL to admit larger time step. Then a widely applicable stability proof, which is suitable for general hyperbolic conservation laws, is given by writing the evolved solution as convex combinations in terms of the Lax-Friedrichs scheme. Some numerical experiments are carried out to verify the robustness.</description><subject>Forward-backward splitting</subject><subject>Hyperbolic conservation laws</subject><subject>Invariant-region-preserving principle</subject><subject>Minimum-maximum-preserving principle</subject><subject>Positivity-preserving principle</subject><subject>Unstaggered-central scheme</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoWKsf4C4_kPElk84kuCpFrVBwo-AuZJI3bco0U5Kh0r93hrp29Tb3XO47hDxyKDjw6mlf2IMrBAhRcFEvAK7IjKu6ZItK6msyA9AVKwHKW3KX8x4A6orLGfleRoptG1zAONAQTzYFGweWcBv6yI4JM6ZTiFvqxkCyHc1uhwekbZ_o7nzE1PRdcNT1cQraYaRoZ3_yPblpbZfx4e_Oydfry-dqzTYfb--r5YY5IeqBqQY811Y7qzl4L72tUUkOCCjRKaUXDZeSC-VKr6pxNVqttNa24XUlBJRzwi-9LvU5J2zNMYWDTWfDwUxqzN6MasykxlzUjMzzhcFx2ClgMnn636EPCd1gfB_-oX8BLnZtHA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Yan, Ruifang</creator><creator>Tong, Wei</creator><creator>Chen, Guoxian</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230101</creationdate><title>An efficient invariant-region-preserving central scheme for hyperbolic conservation laws</title><author>Yan, Ruifang ; Tong, Wei ; Chen, Guoxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-8b0d19a9ca910dd4da7e8410e0e4ec8895b144128c3d86007ea98999ab1762203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Forward-backward splitting</topic><topic>Hyperbolic conservation laws</topic><topic>Invariant-region-preserving principle</topic><topic>Minimum-maximum-preserving principle</topic><topic>Positivity-preserving principle</topic><topic>Unstaggered-central scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ruifang</creatorcontrib><creatorcontrib>Tong, Wei</creatorcontrib><creatorcontrib>Chen, Guoxian</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ruifang</au><au>Tong, Wei</au><au>Chen, Guoxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient invariant-region-preserving central scheme for hyperbolic conservation laws</atitle><jtitle>Applied mathematics and computation</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>436</volume><spage>127500</spage><pages>127500-</pages><artnum>127500</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>•New second-order accurate invariant-region-preserving(IRP) unstaggered-central scheme for the hyperbolic conservation laws.•Extended IRP limiter, which is applied to reconstructed slopes such that it remains effective in the vicinity of the active cell.•Proof of stability, which is so called froward-backward splitting, is adaptable for scalar equations and general nonlinear systems.•More relaxed CFL condition implies the larger time step.
Due to the Riemann solver free and avoiding characteristic decomposition, the central scheme is a simple and efficient tool for numerical solution of hyperbolic conservation laws (Nessyahu and Tadmor, J. Comput. Phys., 87(2):314-329,1990). But the theoretical Courant number CFL in order to preserve the invariant region of the numerical solution is very small, and there is lack of the stability proof for nonlinear systems. By adding a limiter on the reconstructed slope without requiring clipping condition, we enlarge the value of the CFL to admit larger time step. Then a widely applicable stability proof, which is suitable for general hyperbolic conservation laws, is given by writing the evolved solution as convex combinations in terms of the Lax-Friedrichs scheme. Some numerical experiments are carried out to verify the robustness.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2022.127500</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2023-01, Vol.436, p.127500, Article 127500 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_amc_2022_127500 |
source | ScienceDirect: Mathematics Backfile; Elsevier; Backfile Package - Computer Science (Legacy) [YCS] |
subjects | Forward-backward splitting Hyperbolic conservation laws Invariant-region-preserving principle Minimum-maximum-preserving principle Positivity-preserving principle Unstaggered-central scheme |
title | An efficient invariant-region-preserving central scheme for hyperbolic conservation laws |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20invariant-region-preserving%20central%20scheme%20for%20hyperbolic%20conservation%20laws&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Yan,%20Ruifang&rft.date=2023-01-01&rft.volume=436&rft.spage=127500&rft.pages=127500-&rft.artnum=127500&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2022.127500&rft_dat=%3Celsevier_cross%3ES0096300322005744%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-8b0d19a9ca910dd4da7e8410e0e4ec8895b144128c3d86007ea98999ab1762203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |