Loading…

An efficient invariant-region-preserving central scheme for hyperbolic conservation laws

•New second-order accurate invariant-region-preserving(IRP) unstaggered-central scheme for the hyperbolic conservation laws.•Extended IRP limiter, which is applied to reconstructed slopes such that it remains effective in the vicinity of the active cell.•Proof of stability, which is so called frowar...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2023-01, Vol.436, p.127500, Article 127500
Main Authors: Yan, Ruifang, Tong, Wei, Chen, Guoxian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c227t-8b0d19a9ca910dd4da7e8410e0e4ec8895b144128c3d86007ea98999ab1762203
cites cdi_FETCH-LOGICAL-c227t-8b0d19a9ca910dd4da7e8410e0e4ec8895b144128c3d86007ea98999ab1762203
container_end_page
container_issue
container_start_page 127500
container_title Applied mathematics and computation
container_volume 436
creator Yan, Ruifang
Tong, Wei
Chen, Guoxian
description •New second-order accurate invariant-region-preserving(IRP) unstaggered-central scheme for the hyperbolic conservation laws.•Extended IRP limiter, which is applied to reconstructed slopes such that it remains effective in the vicinity of the active cell.•Proof of stability, which is so called froward-backward splitting, is adaptable for scalar equations and general nonlinear systems.•More relaxed CFL condition implies the larger time step. Due to the Riemann solver free and avoiding characteristic decomposition, the central scheme is a simple and efficient tool for numerical solution of hyperbolic conservation laws (Nessyahu and Tadmor, J. Comput. Phys., 87(2):314-329,1990). But the theoretical Courant number CFL in order to preserve the invariant region of the numerical solution is very small, and there is lack of the stability proof for nonlinear systems. By adding a limiter on the reconstructed slope without requiring clipping condition, we enlarge the value of the CFL to admit larger time step. Then a widely applicable stability proof, which is suitable for general hyperbolic conservation laws, is given by writing the evolved solution as convex combinations in terms of the Lax-Friedrichs scheme. Some numerical experiments are carried out to verify the robustness.
doi_str_mv 10.1016/j.amc.2022.127500
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2022_127500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300322005744</els_id><sourcerecordid>S0096300322005744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-8b0d19a9ca910dd4da7e8410e0e4ec8895b144128c3d86007ea98999ab1762203</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKsf4C4_kPElk84kuCpFrVBwo-AuZJI3bco0U5Kh0r93hrp29Tb3XO47hDxyKDjw6mlf2IMrBAhRcFEvAK7IjKu6ZItK6msyA9AVKwHKW3KX8x4A6orLGfleRoptG1zAONAQTzYFGweWcBv6yI4JM6ZTiFvqxkCyHc1uhwekbZ_o7nzE1PRdcNT1cQraYaRoZ3_yPblpbZfx4e_Oydfry-dqzTYfb--r5YY5IeqBqQY811Y7qzl4L72tUUkOCCjRKaUXDZeSC-VKr6pxNVqttNa24XUlBJRzwi-9LvU5J2zNMYWDTWfDwUxqzN6MasykxlzUjMzzhcFx2ClgMnn636EPCd1gfB_-oX8BLnZtHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An efficient invariant-region-preserving central scheme for hyperbolic conservation laws</title><source>ScienceDirect: Mathematics Backfile</source><source>Elsevier</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><creator>Yan, Ruifang ; Tong, Wei ; Chen, Guoxian</creator><creatorcontrib>Yan, Ruifang ; Tong, Wei ; Chen, Guoxian</creatorcontrib><description>•New second-order accurate invariant-region-preserving(IRP) unstaggered-central scheme for the hyperbolic conservation laws.•Extended IRP limiter, which is applied to reconstructed slopes such that it remains effective in the vicinity of the active cell.•Proof of stability, which is so called froward-backward splitting, is adaptable for scalar equations and general nonlinear systems.•More relaxed CFL condition implies the larger time step. Due to the Riemann solver free and avoiding characteristic decomposition, the central scheme is a simple and efficient tool for numerical solution of hyperbolic conservation laws (Nessyahu and Tadmor, J. Comput. Phys., 87(2):314-329,1990). But the theoretical Courant number CFL in order to preserve the invariant region of the numerical solution is very small, and there is lack of the stability proof for nonlinear systems. By adding a limiter on the reconstructed slope without requiring clipping condition, we enlarge the value of the CFL to admit larger time step. Then a widely applicable stability proof, which is suitable for general hyperbolic conservation laws, is given by writing the evolved solution as convex combinations in terms of the Lax-Friedrichs scheme. Some numerical experiments are carried out to verify the robustness.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2022.127500</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Forward-backward splitting ; Hyperbolic conservation laws ; Invariant-region-preserving principle ; Minimum-maximum-preserving principle ; Positivity-preserving principle ; Unstaggered-central scheme</subject><ispartof>Applied mathematics and computation, 2023-01, Vol.436, p.127500, Article 127500</ispartof><rights>2022 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-8b0d19a9ca910dd4da7e8410e0e4ec8895b144128c3d86007ea98999ab1762203</citedby><cites>FETCH-LOGICAL-c227t-8b0d19a9ca910dd4da7e8410e0e4ec8895b144128c3d86007ea98999ab1762203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300322005744$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3416,3551,27901,27902,45948,45978</link.rule.ids></links><search><creatorcontrib>Yan, Ruifang</creatorcontrib><creatorcontrib>Tong, Wei</creatorcontrib><creatorcontrib>Chen, Guoxian</creatorcontrib><title>An efficient invariant-region-preserving central scheme for hyperbolic conservation laws</title><title>Applied mathematics and computation</title><description>•New second-order accurate invariant-region-preserving(IRP) unstaggered-central scheme for the hyperbolic conservation laws.•Extended IRP limiter, which is applied to reconstructed slopes such that it remains effective in the vicinity of the active cell.•Proof of stability, which is so called froward-backward splitting, is adaptable for scalar equations and general nonlinear systems.•More relaxed CFL condition implies the larger time step. Due to the Riemann solver free and avoiding characteristic decomposition, the central scheme is a simple and efficient tool for numerical solution of hyperbolic conservation laws (Nessyahu and Tadmor, J. Comput. Phys., 87(2):314-329,1990). But the theoretical Courant number CFL in order to preserve the invariant region of the numerical solution is very small, and there is lack of the stability proof for nonlinear systems. By adding a limiter on the reconstructed slope without requiring clipping condition, we enlarge the value of the CFL to admit larger time step. Then a widely applicable stability proof, which is suitable for general hyperbolic conservation laws, is given by writing the evolved solution as convex combinations in terms of the Lax-Friedrichs scheme. Some numerical experiments are carried out to verify the robustness.</description><subject>Forward-backward splitting</subject><subject>Hyperbolic conservation laws</subject><subject>Invariant-region-preserving principle</subject><subject>Minimum-maximum-preserving principle</subject><subject>Positivity-preserving principle</subject><subject>Unstaggered-central scheme</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoWKsf4C4_kPElk84kuCpFrVBwo-AuZJI3bco0U5Kh0r93hrp29Tb3XO47hDxyKDjw6mlf2IMrBAhRcFEvAK7IjKu6ZItK6msyA9AVKwHKW3KX8x4A6orLGfleRoptG1zAONAQTzYFGweWcBv6yI4JM6ZTiFvqxkCyHc1uhwekbZ_o7nzE1PRdcNT1cQraYaRoZ3_yPblpbZfx4e_Oydfry-dqzTYfb--r5YY5IeqBqQY811Y7qzl4L72tUUkOCCjRKaUXDZeSC-VKr6pxNVqttNa24XUlBJRzwi-9LvU5J2zNMYWDTWfDwUxqzN6MasykxlzUjMzzhcFx2ClgMnn636EPCd1gfB_-oX8BLnZtHA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Yan, Ruifang</creator><creator>Tong, Wei</creator><creator>Chen, Guoxian</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230101</creationdate><title>An efficient invariant-region-preserving central scheme for hyperbolic conservation laws</title><author>Yan, Ruifang ; Tong, Wei ; Chen, Guoxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-8b0d19a9ca910dd4da7e8410e0e4ec8895b144128c3d86007ea98999ab1762203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Forward-backward splitting</topic><topic>Hyperbolic conservation laws</topic><topic>Invariant-region-preserving principle</topic><topic>Minimum-maximum-preserving principle</topic><topic>Positivity-preserving principle</topic><topic>Unstaggered-central scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ruifang</creatorcontrib><creatorcontrib>Tong, Wei</creatorcontrib><creatorcontrib>Chen, Guoxian</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ruifang</au><au>Tong, Wei</au><au>Chen, Guoxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient invariant-region-preserving central scheme for hyperbolic conservation laws</atitle><jtitle>Applied mathematics and computation</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>436</volume><spage>127500</spage><pages>127500-</pages><artnum>127500</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>•New second-order accurate invariant-region-preserving(IRP) unstaggered-central scheme for the hyperbolic conservation laws.•Extended IRP limiter, which is applied to reconstructed slopes such that it remains effective in the vicinity of the active cell.•Proof of stability, which is so called froward-backward splitting, is adaptable for scalar equations and general nonlinear systems.•More relaxed CFL condition implies the larger time step. Due to the Riemann solver free and avoiding characteristic decomposition, the central scheme is a simple and efficient tool for numerical solution of hyperbolic conservation laws (Nessyahu and Tadmor, J. Comput. Phys., 87(2):314-329,1990). But the theoretical Courant number CFL in order to preserve the invariant region of the numerical solution is very small, and there is lack of the stability proof for nonlinear systems. By adding a limiter on the reconstructed slope without requiring clipping condition, we enlarge the value of the CFL to admit larger time step. Then a widely applicable stability proof, which is suitable for general hyperbolic conservation laws, is given by writing the evolved solution as convex combinations in terms of the Lax-Friedrichs scheme. Some numerical experiments are carried out to verify the robustness.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2022.127500</doi></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2023-01, Vol.436, p.127500, Article 127500
issn 0096-3003
1873-5649
language eng
recordid cdi_crossref_primary_10_1016_j_amc_2022_127500
source ScienceDirect: Mathematics Backfile; Elsevier; Backfile Package - Computer Science (Legacy) [YCS]
subjects Forward-backward splitting
Hyperbolic conservation laws
Invariant-region-preserving principle
Minimum-maximum-preserving principle
Positivity-preserving principle
Unstaggered-central scheme
title An efficient invariant-region-preserving central scheme for hyperbolic conservation laws
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20invariant-region-preserving%20central%20scheme%20for%20hyperbolic%20conservation%20laws&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Yan,%20Ruifang&rft.date=2023-01-01&rft.volume=436&rft.spage=127500&rft.pages=127500-&rft.artnum=127500&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2022.127500&rft_dat=%3Celsevier_cross%3ES0096300322005744%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-8b0d19a9ca910dd4da7e8410e0e4ec8895b144128c3d86007ea98999ab1762203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true