Loading…

Enrichment strategies for the simplicial linear finite elements

•New enrichment strategies for the simplicial linear finite elements.•Explicit formulas for the basis functions of the enriched finite elements.•Error bounds in L1-norm and L∞-norm. In this paper, we introduce a new class of finite elements by enriching the standard simplicial linear finite element...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2023-08, Vol.451, p.128023, Article 128023
Main Authors: Dell’Accio, Francesco, Di Tommaso, Filomena, Guessab, Allal, Nudo, Federico
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c292t-45d9d2a7d4e61438bb563507934629e8b4919d2b6a96ccf0276fd231f4a02eba3
container_end_page
container_issue
container_start_page 128023
container_title Applied mathematics and computation
container_volume 451
creator Dell’Accio, Francesco
Di Tommaso, Filomena
Guessab, Allal
Nudo, Federico
description •New enrichment strategies for the simplicial linear finite elements.•Explicit formulas for the basis functions of the enriched finite elements.•Error bounds in L1-norm and L∞-norm. In this paper, we introduce a new class of finite elements by enriching the standard simplicial linear finite element in Rd with additional functions which are not necessarily polynomials. We provide necessary and sufficient conditions on the enrichment functions, which guarantee the existence of families of such enriched elements. Furthermore, we derive explicit formulas for their associated basis functions. We also show that the approximation error, obtained by using the proposed enriched elements, can be written as the error of the standard simplicial linear finite element plus a second term which depends on the enrichment functions. By using this decomposition, we derive explicit bounds in both L∞-norm and L1-norm.
doi_str_mv 10.1016/j.amc.2023.128023
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2023_128023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300323001923</els_id><sourcerecordid>S0096300323001923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-45d9d2a7d4e61438bb563507934629e8b4919d2b6a96ccf0276fd231f4a02eba3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoWEcfwF1eoPXmp2mDC5FhHIUBN7oOaXrjpLSdIQmCb2-Hce3qbM537-Ej5J5BxYCph6Gyk6s4cFEx3i5xQQrWNqKsldSXpADQqhQA4prcpDQAQKOYLMjTZo7B7SecM0052oxfARP1h0jzHmkK03EMLtiRjmFGG6kPc8hIccQTk27Jlbdjwru_XJHPl83H-rXcvW_f1s-70nHNcynrXvfcNr3E5a1ou65WooZGC6m4xraTmi2FTlmtnPPAG-V7LpiXFjh2VqwIO9918ZBSRG-OMUw2_hgG5mTADGYxYE4GzNnAwjyeGVyGfQeMJrmAs8M-RHTZ9IfwD_0LsXFjdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enrichment strategies for the simplicial linear finite elements</title><source>ScienceDirect Freedom Collection</source><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Dell’Accio, Francesco ; Di Tommaso, Filomena ; Guessab, Allal ; Nudo, Federico</creator><creatorcontrib>Dell’Accio, Francesco ; Di Tommaso, Filomena ; Guessab, Allal ; Nudo, Federico</creatorcontrib><description>•New enrichment strategies for the simplicial linear finite elements.•Explicit formulas for the basis functions of the enriched finite elements.•Error bounds in L1-norm and L∞-norm. In this paper, we introduce a new class of finite elements by enriching the standard simplicial linear finite element in Rd with additional functions which are not necessarily polynomials. We provide necessary and sufficient conditions on the enrichment functions, which guarantee the existence of families of such enriched elements. Furthermore, we derive explicit formulas for their associated basis functions. We also show that the approximation error, obtained by using the proposed enriched elements, can be written as the error of the standard simplicial linear finite element plus a second term which depends on the enrichment functions. By using this decomposition, we derive explicit bounds in both L∞-norm and L1-norm.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2023.128023</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Enriched finite element method ; Error estimates ; Finite element method ; Non-polynomial enrichment ; Simplicial linear finite element</subject><ispartof>Applied mathematics and computation, 2023-08, Vol.451, p.128023, Article 128023</ispartof><rights>2023 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-45d9d2a7d4e61438bb563507934629e8b4919d2b6a96ccf0276fd231f4a02eba3</cites><orcidid>0000-0002-4638-2994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300323001923$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3416,3551,27905,27906,45953,45984</link.rule.ids></links><search><creatorcontrib>Dell’Accio, Francesco</creatorcontrib><creatorcontrib>Di Tommaso, Filomena</creatorcontrib><creatorcontrib>Guessab, Allal</creatorcontrib><creatorcontrib>Nudo, Federico</creatorcontrib><title>Enrichment strategies for the simplicial linear finite elements</title><title>Applied mathematics and computation</title><description>•New enrichment strategies for the simplicial linear finite elements.•Explicit formulas for the basis functions of the enriched finite elements.•Error bounds in L1-norm and L∞-norm. In this paper, we introduce a new class of finite elements by enriching the standard simplicial linear finite element in Rd with additional functions which are not necessarily polynomials. We provide necessary and sufficient conditions on the enrichment functions, which guarantee the existence of families of such enriched elements. Furthermore, we derive explicit formulas for their associated basis functions. We also show that the approximation error, obtained by using the proposed enriched elements, can be written as the error of the standard simplicial linear finite element plus a second term which depends on the enrichment functions. By using this decomposition, we derive explicit bounds in both L∞-norm and L1-norm.</description><subject>Enriched finite element method</subject><subject>Error estimates</subject><subject>Finite element method</subject><subject>Non-polynomial enrichment</subject><subject>Simplicial linear finite element</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoWEcfwF1eoPXmp2mDC5FhHIUBN7oOaXrjpLSdIQmCb2-Hce3qbM537-Ej5J5BxYCph6Gyk6s4cFEx3i5xQQrWNqKsldSXpADQqhQA4prcpDQAQKOYLMjTZo7B7SecM0052oxfARP1h0jzHmkK03EMLtiRjmFGG6kPc8hIccQTk27Jlbdjwru_XJHPl83H-rXcvW_f1s-70nHNcynrXvfcNr3E5a1ou65WooZGC6m4xraTmi2FTlmtnPPAG-V7LpiXFjh2VqwIO9918ZBSRG-OMUw2_hgG5mTADGYxYE4GzNnAwjyeGVyGfQeMJrmAs8M-RHTZ9IfwD_0LsXFjdg</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Dell’Accio, Francesco</creator><creator>Di Tommaso, Filomena</creator><creator>Guessab, Allal</creator><creator>Nudo, Federico</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4638-2994</orcidid></search><sort><creationdate>20230815</creationdate><title>Enrichment strategies for the simplicial linear finite elements</title><author>Dell’Accio, Francesco ; Di Tommaso, Filomena ; Guessab, Allal ; Nudo, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-45d9d2a7d4e61438bb563507934629e8b4919d2b6a96ccf0276fd231f4a02eba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Enriched finite element method</topic><topic>Error estimates</topic><topic>Finite element method</topic><topic>Non-polynomial enrichment</topic><topic>Simplicial linear finite element</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dell’Accio, Francesco</creatorcontrib><creatorcontrib>Di Tommaso, Filomena</creatorcontrib><creatorcontrib>Guessab, Allal</creatorcontrib><creatorcontrib>Nudo, Federico</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dell’Accio, Francesco</au><au>Di Tommaso, Filomena</au><au>Guessab, Allal</au><au>Nudo, Federico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enrichment strategies for the simplicial linear finite elements</atitle><jtitle>Applied mathematics and computation</jtitle><date>2023-08-15</date><risdate>2023</risdate><volume>451</volume><spage>128023</spage><pages>128023-</pages><artnum>128023</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>•New enrichment strategies for the simplicial linear finite elements.•Explicit formulas for the basis functions of the enriched finite elements.•Error bounds in L1-norm and L∞-norm. In this paper, we introduce a new class of finite elements by enriching the standard simplicial linear finite element in Rd with additional functions which are not necessarily polynomials. We provide necessary and sufficient conditions on the enrichment functions, which guarantee the existence of families of such enriched elements. Furthermore, we derive explicit formulas for their associated basis functions. We also show that the approximation error, obtained by using the proposed enriched elements, can be written as the error of the standard simplicial linear finite element plus a second term which depends on the enrichment functions. By using this decomposition, we derive explicit bounds in both L∞-norm and L1-norm.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2023.128023</doi><orcidid>https://orcid.org/0000-0002-4638-2994</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2023-08, Vol.451, p.128023, Article 128023
issn 0096-3003
1873-5649
language eng
recordid cdi_crossref_primary_10_1016_j_amc_2023_128023
source ScienceDirect Freedom Collection; ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT]
subjects Enriched finite element method
Error estimates
Finite element method
Non-polynomial enrichment
Simplicial linear finite element
title Enrichment strategies for the simplicial linear finite elements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enrichment%20strategies%20for%20the%20simplicial%20linear%20finite%20elements&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Dell%E2%80%99Accio,%20Francesco&rft.date=2023-08-15&rft.volume=451&rft.spage=128023&rft.pages=128023-&rft.artnum=128023&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2023.128023&rft_dat=%3Celsevier_cross%3ES0096300323001923%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-45d9d2a7d4e61438bb563507934629e8b4919d2b6a96ccf0276fd231f4a02eba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true