Loading…
Enrichment strategies for the simplicial linear finite elements
•New enrichment strategies for the simplicial linear finite elements.•Explicit formulas for the basis functions of the enriched finite elements.•Error bounds in L1-norm and L∞-norm. In this paper, we introduce a new class of finite elements by enriching the standard simplicial linear finite element...
Saved in:
Published in: | Applied mathematics and computation 2023-08, Vol.451, p.128023, Article 128023 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-45d9d2a7d4e61438bb563507934629e8b4919d2b6a96ccf0276fd231f4a02eba3 |
container_end_page | |
container_issue | |
container_start_page | 128023 |
container_title | Applied mathematics and computation |
container_volume | 451 |
creator | Dell’Accio, Francesco Di Tommaso, Filomena Guessab, Allal Nudo, Federico |
description | •New enrichment strategies for the simplicial linear finite elements.•Explicit formulas for the basis functions of the enriched finite elements.•Error bounds in L1-norm and L∞-norm.
In this paper, we introduce a new class of finite elements by enriching the standard simplicial linear finite element in Rd with additional functions which are not necessarily polynomials. We provide necessary and sufficient conditions on the enrichment functions, which guarantee the existence of families of such enriched elements. Furthermore, we derive explicit formulas for their associated basis functions. We also show that the approximation error, obtained by using the proposed enriched elements, can be written as the error of the standard simplicial linear finite element plus a second term which depends on the enrichment functions. By using this decomposition, we derive explicit bounds in both L∞-norm and L1-norm. |
doi_str_mv | 10.1016/j.amc.2023.128023 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2023_128023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300323001923</els_id><sourcerecordid>S0096300323001923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-45d9d2a7d4e61438bb563507934629e8b4919d2b6a96ccf0276fd231f4a02eba3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoWEcfwF1eoPXmp2mDC5FhHIUBN7oOaXrjpLSdIQmCb2-Hce3qbM537-Ej5J5BxYCph6Gyk6s4cFEx3i5xQQrWNqKsldSXpADQqhQA4prcpDQAQKOYLMjTZo7B7SecM0052oxfARP1h0jzHmkK03EMLtiRjmFGG6kPc8hIccQTk27Jlbdjwru_XJHPl83H-rXcvW_f1s-70nHNcynrXvfcNr3E5a1ou65WooZGC6m4xraTmi2FTlmtnPPAG-V7LpiXFjh2VqwIO9918ZBSRG-OMUw2_hgG5mTADGYxYE4GzNnAwjyeGVyGfQeMJrmAs8M-RHTZ9IfwD_0LsXFjdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enrichment strategies for the simplicial linear finite elements</title><source>ScienceDirect Freedom Collection</source><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Dell’Accio, Francesco ; Di Tommaso, Filomena ; Guessab, Allal ; Nudo, Federico</creator><creatorcontrib>Dell’Accio, Francesco ; Di Tommaso, Filomena ; Guessab, Allal ; Nudo, Federico</creatorcontrib><description>•New enrichment strategies for the simplicial linear finite elements.•Explicit formulas for the basis functions of the enriched finite elements.•Error bounds in L1-norm and L∞-norm.
In this paper, we introduce a new class of finite elements by enriching the standard simplicial linear finite element in Rd with additional functions which are not necessarily polynomials. We provide necessary and sufficient conditions on the enrichment functions, which guarantee the existence of families of such enriched elements. Furthermore, we derive explicit formulas for their associated basis functions. We also show that the approximation error, obtained by using the proposed enriched elements, can be written as the error of the standard simplicial linear finite element plus a second term which depends on the enrichment functions. By using this decomposition, we derive explicit bounds in both L∞-norm and L1-norm.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2023.128023</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Enriched finite element method ; Error estimates ; Finite element method ; Non-polynomial enrichment ; Simplicial linear finite element</subject><ispartof>Applied mathematics and computation, 2023-08, Vol.451, p.128023, Article 128023</ispartof><rights>2023 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-45d9d2a7d4e61438bb563507934629e8b4919d2b6a96ccf0276fd231f4a02eba3</cites><orcidid>0000-0002-4638-2994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300323001923$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3416,3551,27905,27906,45953,45984</link.rule.ids></links><search><creatorcontrib>Dell’Accio, Francesco</creatorcontrib><creatorcontrib>Di Tommaso, Filomena</creatorcontrib><creatorcontrib>Guessab, Allal</creatorcontrib><creatorcontrib>Nudo, Federico</creatorcontrib><title>Enrichment strategies for the simplicial linear finite elements</title><title>Applied mathematics and computation</title><description>•New enrichment strategies for the simplicial linear finite elements.•Explicit formulas for the basis functions of the enriched finite elements.•Error bounds in L1-norm and L∞-norm.
In this paper, we introduce a new class of finite elements by enriching the standard simplicial linear finite element in Rd with additional functions which are not necessarily polynomials. We provide necessary and sufficient conditions on the enrichment functions, which guarantee the existence of families of such enriched elements. Furthermore, we derive explicit formulas for their associated basis functions. We also show that the approximation error, obtained by using the proposed enriched elements, can be written as the error of the standard simplicial linear finite element plus a second term which depends on the enrichment functions. By using this decomposition, we derive explicit bounds in both L∞-norm and L1-norm.</description><subject>Enriched finite element method</subject><subject>Error estimates</subject><subject>Finite element method</subject><subject>Non-polynomial enrichment</subject><subject>Simplicial linear finite element</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoWEcfwF1eoPXmp2mDC5FhHIUBN7oOaXrjpLSdIQmCb2-Hce3qbM537-Ej5J5BxYCph6Gyk6s4cFEx3i5xQQrWNqKsldSXpADQqhQA4prcpDQAQKOYLMjTZo7B7SecM0052oxfARP1h0jzHmkK03EMLtiRjmFGG6kPc8hIccQTk27Jlbdjwru_XJHPl83H-rXcvW_f1s-70nHNcynrXvfcNr3E5a1ou65WooZGC6m4xraTmi2FTlmtnPPAG-V7LpiXFjh2VqwIO9918ZBSRG-OMUw2_hgG5mTADGYxYE4GzNnAwjyeGVyGfQeMJrmAs8M-RHTZ9IfwD_0LsXFjdg</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Dell’Accio, Francesco</creator><creator>Di Tommaso, Filomena</creator><creator>Guessab, Allal</creator><creator>Nudo, Federico</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4638-2994</orcidid></search><sort><creationdate>20230815</creationdate><title>Enrichment strategies for the simplicial linear finite elements</title><author>Dell’Accio, Francesco ; Di Tommaso, Filomena ; Guessab, Allal ; Nudo, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-45d9d2a7d4e61438bb563507934629e8b4919d2b6a96ccf0276fd231f4a02eba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Enriched finite element method</topic><topic>Error estimates</topic><topic>Finite element method</topic><topic>Non-polynomial enrichment</topic><topic>Simplicial linear finite element</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dell’Accio, Francesco</creatorcontrib><creatorcontrib>Di Tommaso, Filomena</creatorcontrib><creatorcontrib>Guessab, Allal</creatorcontrib><creatorcontrib>Nudo, Federico</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dell’Accio, Francesco</au><au>Di Tommaso, Filomena</au><au>Guessab, Allal</au><au>Nudo, Federico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enrichment strategies for the simplicial linear finite elements</atitle><jtitle>Applied mathematics and computation</jtitle><date>2023-08-15</date><risdate>2023</risdate><volume>451</volume><spage>128023</spage><pages>128023-</pages><artnum>128023</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>•New enrichment strategies for the simplicial linear finite elements.•Explicit formulas for the basis functions of the enriched finite elements.•Error bounds in L1-norm and L∞-norm.
In this paper, we introduce a new class of finite elements by enriching the standard simplicial linear finite element in Rd with additional functions which are not necessarily polynomials. We provide necessary and sufficient conditions on the enrichment functions, which guarantee the existence of families of such enriched elements. Furthermore, we derive explicit formulas for their associated basis functions. We also show that the approximation error, obtained by using the proposed enriched elements, can be written as the error of the standard simplicial linear finite element plus a second term which depends on the enrichment functions. By using this decomposition, we derive explicit bounds in both L∞-norm and L1-norm.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2023.128023</doi><orcidid>https://orcid.org/0000-0002-4638-2994</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2023-08, Vol.451, p.128023, Article 128023 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_amc_2023_128023 |
source | ScienceDirect Freedom Collection; ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Enriched finite element method Error estimates Finite element method Non-polynomial enrichment Simplicial linear finite element |
title | Enrichment strategies for the simplicial linear finite elements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enrichment%20strategies%20for%20the%20simplicial%20linear%20finite%20elements&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Dell%E2%80%99Accio,%20Francesco&rft.date=2023-08-15&rft.volume=451&rft.spage=128023&rft.pages=128023-&rft.artnum=128023&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2023.128023&rft_dat=%3Celsevier_cross%3ES0096300323001923%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-45d9d2a7d4e61438bb563507934629e8b4919d2b6a96ccf0276fd231f4a02eba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |