Loading…

Proper interval vertex colorings of graphs

In this paper, we explore proper vertex colorings of graphs with the additional constraint that the colors used on the closed neighborhood of every vertex form an integer interval; such colorings are called proper closed interval vertex colorings (PCIV colorings for short). As not every graph admits...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2024-09, Vol.477, p.128813, Article 128813
Main Authors: Madaras, Tomáš, Matisová, Daniela, Onderko, Alfréd, Šárošiová, Zuzana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c249t-e97daccb758b421cabcb9fe801e7d2d21743b7b814922799a7327cd719fd2d403
container_end_page
container_issue
container_start_page 128813
container_title Applied mathematics and computation
container_volume 477
creator Madaras, Tomáš
Matisová, Daniela
Onderko, Alfréd
Šárošiová, Zuzana
description In this paper, we explore proper vertex colorings of graphs with the additional constraint that the colors used on the closed neighborhood of every vertex form an integer interval; such colorings are called proper closed interval vertex colorings (PCIV colorings for short). As not every graph admits such a coloring, we are concerned with the problem of deciding which graphs admit PCIV colorings, describing several sufficient conditions (among them unique and 3-colorability, partial decomposability into two bipartite graphs, and density constraints) as well as some constructions of PCIV uncolorable graphs. We also present an algorithmic support for PCIV colorability based on a modification of the standard greedy algorithm for standard proper coloring. •Propose a new proper coloring (PCIV coloring) where colors on closed neighborhoods of vertices form integer intervals.•Particular sufficient conditions for PCIV colorability are proved.•Several constructions of PCIV uncolorable graphs are presented.•Greedy algorithm for finding a PCIV coloring is developed.
doi_str_mv 10.1016/j.amc.2024.128813
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2024_128813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300324002741</els_id><sourcerecordid>S0096300324002741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-e97daccb758b421cabcb9fe801e7d2d21743b7b814922799a7327cd719fd2d403</originalsourceid><addsrcrecordid>eNp9j8FKxDAURYMoOI5-gLuuhdb3kkzT4EoGHYUBXeg6pOnrmNJpS1KK_r0d6trVXVzO5R7GbhEyBMzvm8weXcaBywx5UaA4YysslEg3udTnbAWg81QAiEt2FWMDACpHuWJ376EfKCS-GylMtk0mCiN9J65v--C7Q0z6OjkEO3zFa3ZR2zbSzV-u2efz08f2Jd2_7V63j_vUcanHlLSqrHOl2hSl5Ohs6UpdUwFIquIVRyVFqcoCpeZcaW2V4MpVCnU91xLEmuGy60IfY6DaDMEfbfgxCOYkaxozy5qTrFlkZ-ZhYWg-NnkKJjpPnaPKB3KjqXr_D_0LunZcJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Proper interval vertex colorings of graphs</title><source>ScienceDirect Freedom Collection 2022-2024</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Madaras, Tomáš ; Matisová, Daniela ; Onderko, Alfréd ; Šárošiová, Zuzana</creator><creatorcontrib>Madaras, Tomáš ; Matisová, Daniela ; Onderko, Alfréd ; Šárošiová, Zuzana</creatorcontrib><description>In this paper, we explore proper vertex colorings of graphs with the additional constraint that the colors used on the closed neighborhood of every vertex form an integer interval; such colorings are called proper closed interval vertex colorings (PCIV colorings for short). As not every graph admits such a coloring, we are concerned with the problem of deciding which graphs admit PCIV colorings, describing several sufficient conditions (among them unique and 3-colorability, partial decomposability into two bipartite graphs, and density constraints) as well as some constructions of PCIV uncolorable graphs. We also present an algorithmic support for PCIV colorability based on a modification of the standard greedy algorithm for standard proper coloring. •Propose a new proper coloring (PCIV coloring) where colors on closed neighborhoods of vertices form integer intervals.•Particular sufficient conditions for PCIV colorability are proved.•Several constructions of PCIV uncolorable graphs are presented.•Greedy algorithm for finding a PCIV coloring is developed.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2024.128813</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Greedy coloring ; Interval vertex coloring ; Proper coloring</subject><ispartof>Applied mathematics and computation, 2024-09, Vol.477, p.128813, Article 128813</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-e97daccb758b421cabcb9fe801e7d2d21743b7b814922799a7327cd719fd2d403</cites><orcidid>0000-0003-4811-3955 ; 0000-0001-9441-5677 ; 0000-0003-4565-043X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300324002741$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3564,27924,27925,45972,46003</link.rule.ids></links><search><creatorcontrib>Madaras, Tomáš</creatorcontrib><creatorcontrib>Matisová, Daniela</creatorcontrib><creatorcontrib>Onderko, Alfréd</creatorcontrib><creatorcontrib>Šárošiová, Zuzana</creatorcontrib><title>Proper interval vertex colorings of graphs</title><title>Applied mathematics and computation</title><description>In this paper, we explore proper vertex colorings of graphs with the additional constraint that the colors used on the closed neighborhood of every vertex form an integer interval; such colorings are called proper closed interval vertex colorings (PCIV colorings for short). As not every graph admits such a coloring, we are concerned with the problem of deciding which graphs admit PCIV colorings, describing several sufficient conditions (among them unique and 3-colorability, partial decomposability into two bipartite graphs, and density constraints) as well as some constructions of PCIV uncolorable graphs. We also present an algorithmic support for PCIV colorability based on a modification of the standard greedy algorithm for standard proper coloring. •Propose a new proper coloring (PCIV coloring) where colors on closed neighborhoods of vertices form integer intervals.•Particular sufficient conditions for PCIV colorability are proved.•Several constructions of PCIV uncolorable graphs are presented.•Greedy algorithm for finding a PCIV coloring is developed.</description><subject>Greedy coloring</subject><subject>Interval vertex coloring</subject><subject>Proper coloring</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j8FKxDAURYMoOI5-gLuuhdb3kkzT4EoGHYUBXeg6pOnrmNJpS1KK_r0d6trVXVzO5R7GbhEyBMzvm8weXcaBywx5UaA4YysslEg3udTnbAWg81QAiEt2FWMDACpHuWJ376EfKCS-GylMtk0mCiN9J65v--C7Q0z6OjkEO3zFa3ZR2zbSzV-u2efz08f2Jd2_7V63j_vUcanHlLSqrHOl2hSl5Ohs6UpdUwFIquIVRyVFqcoCpeZcaW2V4MpVCnU91xLEmuGy60IfY6DaDMEfbfgxCOYkaxozy5qTrFlkZ-ZhYWg-NnkKJjpPnaPKB3KjqXr_D_0LunZcJA</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Madaras, Tomáš</creator><creator>Matisová, Daniela</creator><creator>Onderko, Alfréd</creator><creator>Šárošiová, Zuzana</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4811-3955</orcidid><orcidid>https://orcid.org/0000-0001-9441-5677</orcidid><orcidid>https://orcid.org/0000-0003-4565-043X</orcidid></search><sort><creationdate>20240915</creationdate><title>Proper interval vertex colorings of graphs</title><author>Madaras, Tomáš ; Matisová, Daniela ; Onderko, Alfréd ; Šárošiová, Zuzana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-e97daccb758b421cabcb9fe801e7d2d21743b7b814922799a7327cd719fd2d403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Greedy coloring</topic><topic>Interval vertex coloring</topic><topic>Proper coloring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madaras, Tomáš</creatorcontrib><creatorcontrib>Matisová, Daniela</creatorcontrib><creatorcontrib>Onderko, Alfréd</creatorcontrib><creatorcontrib>Šárošiová, Zuzana</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madaras, Tomáš</au><au>Matisová, Daniela</au><au>Onderko, Alfréd</au><au>Šárošiová, Zuzana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proper interval vertex colorings of graphs</atitle><jtitle>Applied mathematics and computation</jtitle><date>2024-09-15</date><risdate>2024</risdate><volume>477</volume><spage>128813</spage><pages>128813-</pages><artnum>128813</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>In this paper, we explore proper vertex colorings of graphs with the additional constraint that the colors used on the closed neighborhood of every vertex form an integer interval; such colorings are called proper closed interval vertex colorings (PCIV colorings for short). As not every graph admits such a coloring, we are concerned with the problem of deciding which graphs admit PCIV colorings, describing several sufficient conditions (among them unique and 3-colorability, partial decomposability into two bipartite graphs, and density constraints) as well as some constructions of PCIV uncolorable graphs. We also present an algorithmic support for PCIV colorability based on a modification of the standard greedy algorithm for standard proper coloring. •Propose a new proper coloring (PCIV coloring) where colors on closed neighborhoods of vertices form integer intervals.•Particular sufficient conditions for PCIV colorability are proved.•Several constructions of PCIV uncolorable graphs are presented.•Greedy algorithm for finding a PCIV coloring is developed.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2024.128813</doi><orcidid>https://orcid.org/0000-0003-4811-3955</orcidid><orcidid>https://orcid.org/0000-0001-9441-5677</orcidid><orcidid>https://orcid.org/0000-0003-4565-043X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2024-09, Vol.477, p.128813, Article 128813
issn 0096-3003
1873-5649
language eng
recordid cdi_crossref_primary_10_1016_j_amc_2024_128813
source ScienceDirect Freedom Collection 2022-2024; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
subjects Greedy coloring
Interval vertex coloring
Proper coloring
title Proper interval vertex colorings of graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proper%20interval%20vertex%20colorings%20of%20graphs&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Madaras,%20Tom%C3%A1%C5%A1&rft.date=2024-09-15&rft.volume=477&rft.spage=128813&rft.pages=128813-&rft.artnum=128813&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2024.128813&rft_dat=%3Celsevier_cross%3ES0096300324002741%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-e97daccb758b421cabcb9fe801e7d2d21743b7b814922799a7327cd719fd2d403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true