Loading…
Remarks on the oscillation of nonlinear third-order noncanonical delay differential equations
This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. Our approach to establishing new criteria essentially simplifies and refines the main results obtained in Džurina and Jadlovská (2018) and Grac...
Saved in:
Published in: | Applied mathematics and computation 2024-11, Vol.481, p.128950, Article 128950 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c179t-b433fe33b42b80a2c8069c83af167cf2656061ddb491a933bc6d88ed466303463 |
container_end_page | |
container_issue | |
container_start_page | 128950 |
container_title | Applied mathematics and computation |
container_volume | 481 |
creator | Prabaharan, Natarajan Madhan, Mayakrishnan Thandapani, Ethiraju Tunç, Ercan |
description | This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. Our approach to establishing new criteria essentially simplifies and refines the main results obtained in Džurina and Jadlovská (2018) and Grace et al. (2019). Examples illustrating the importance of our results are presented.
•This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. We first transform the studied nonlinear noncanonical third-order delay differential equation into semi-canonical type. This approach simplifies the examination of the considered equation. Moreover, our approach to establishing new criteria substantially improves and extends some known results in the relevant literature. |
doi_str_mv | 10.1016/j.amc.2024.128950 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2024_128950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300324004119</els_id><sourcerecordid>S0096300324004119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-b433fe33b42b80a2c8069c83af167cf2656061ddb491a933bc6d88ed466303463</originalsourceid><addsrcrecordid>eNp9UMFKAzEQDaJgrX6At_2BXSebNJvgSYpaoSCIHiVkkwmmbjearEL_3tR69jLDvJn3mPcIuaTQUKDiatOYrW1aaHlDW6kWcERmVHasXgiujskMQImaAbBTcpbzBgA6QfmMvD7h1qT3XMWxmt6witmGYTBTKHP01RjHIYxoUlmG5OqYHKY9ak0pwZqhcjiYXeWC95hwnEKB8PPrVyGfkxNvhowXf31OXu5un5erev14_7C8WdeWdmqqe86YR8Z63vYSTGslCGUlM56KzvpWLAQI6lzPFTWq3FnhpETHhWDAuGBzQg-6NsWcE3r9kULxtdMU9D4fvdElH73PRx_yKZzrAwfLY98Bky7WcbToQkI7aRfDP-wfgIRu6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Remarks on the oscillation of nonlinear third-order noncanonical delay differential equations</title><source>Elsevier</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Prabaharan, Natarajan ; Madhan, Mayakrishnan ; Thandapani, Ethiraju ; Tunç, Ercan</creator><creatorcontrib>Prabaharan, Natarajan ; Madhan, Mayakrishnan ; Thandapani, Ethiraju ; Tunç, Ercan</creatorcontrib><description>This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. Our approach to establishing new criteria essentially simplifies and refines the main results obtained in Džurina and Jadlovská (2018) and Grace et al. (2019). Examples illustrating the importance of our results are presented.
•This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. We first transform the studied nonlinear noncanonical third-order delay differential equation into semi-canonical type. This approach simplifies the examination of the considered equation. Moreover, our approach to establishing new criteria substantially improves and extends some known results in the relevant literature.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2024.128950</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Delay ; Noncanonical operators ; Nonlinear ; Oscillation ; Third-order</subject><ispartof>Applied mathematics and computation, 2024-11, Vol.481, p.128950, Article 128950</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-b433fe33b42b80a2c8069c83af167cf2656061ddb491a933bc6d88ed466303463</cites><orcidid>0000-0002-7364-2480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300324004119$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3416,3551,27905,27906,45953,45984</link.rule.ids></links><search><creatorcontrib>Prabaharan, Natarajan</creatorcontrib><creatorcontrib>Madhan, Mayakrishnan</creatorcontrib><creatorcontrib>Thandapani, Ethiraju</creatorcontrib><creatorcontrib>Tunç, Ercan</creatorcontrib><title>Remarks on the oscillation of nonlinear third-order noncanonical delay differential equations</title><title>Applied mathematics and computation</title><description>This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. Our approach to establishing new criteria essentially simplifies and refines the main results obtained in Džurina and Jadlovská (2018) and Grace et al. (2019). Examples illustrating the importance of our results are presented.
•This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. We first transform the studied nonlinear noncanonical third-order delay differential equation into semi-canonical type. This approach simplifies the examination of the considered equation. Moreover, our approach to establishing new criteria substantially improves and extends some known results in the relevant literature.</description><subject>Delay</subject><subject>Noncanonical operators</subject><subject>Nonlinear</subject><subject>Oscillation</subject><subject>Third-order</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEQDaJgrX6At_2BXSebNJvgSYpaoSCIHiVkkwmmbjearEL_3tR69jLDvJn3mPcIuaTQUKDiatOYrW1aaHlDW6kWcERmVHasXgiujskMQImaAbBTcpbzBgA6QfmMvD7h1qT3XMWxmt6witmGYTBTKHP01RjHIYxoUlmG5OqYHKY9ak0pwZqhcjiYXeWC95hwnEKB8PPrVyGfkxNvhowXf31OXu5un5erev14_7C8WdeWdmqqe86YR8Z63vYSTGslCGUlM56KzvpWLAQI6lzPFTWq3FnhpETHhWDAuGBzQg-6NsWcE3r9kULxtdMU9D4fvdElH73PRx_yKZzrAwfLY98Bky7WcbToQkI7aRfDP-wfgIRu6w</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Prabaharan, Natarajan</creator><creator>Madhan, Mayakrishnan</creator><creator>Thandapani, Ethiraju</creator><creator>Tunç, Ercan</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7364-2480</orcidid></search><sort><creationdate>20241115</creationdate><title>Remarks on the oscillation of nonlinear third-order noncanonical delay differential equations</title><author>Prabaharan, Natarajan ; Madhan, Mayakrishnan ; Thandapani, Ethiraju ; Tunç, Ercan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-b433fe33b42b80a2c8069c83af167cf2656061ddb491a933bc6d88ed466303463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Delay</topic><topic>Noncanonical operators</topic><topic>Nonlinear</topic><topic>Oscillation</topic><topic>Third-order</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prabaharan, Natarajan</creatorcontrib><creatorcontrib>Madhan, Mayakrishnan</creatorcontrib><creatorcontrib>Thandapani, Ethiraju</creatorcontrib><creatorcontrib>Tunç, Ercan</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prabaharan, Natarajan</au><au>Madhan, Mayakrishnan</au><au>Thandapani, Ethiraju</au><au>Tunç, Ercan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remarks on the oscillation of nonlinear third-order noncanonical delay differential equations</atitle><jtitle>Applied mathematics and computation</jtitle><date>2024-11-15</date><risdate>2024</risdate><volume>481</volume><spage>128950</spage><pages>128950-</pages><artnum>128950</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. Our approach to establishing new criteria essentially simplifies and refines the main results obtained in Džurina and Jadlovská (2018) and Grace et al. (2019). Examples illustrating the importance of our results are presented.
•This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. We first transform the studied nonlinear noncanonical third-order delay differential equation into semi-canonical type. This approach simplifies the examination of the considered equation. Moreover, our approach to establishing new criteria substantially improves and extends some known results in the relevant literature.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2024.128950</doi><orcidid>https://orcid.org/0000-0002-7364-2480</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2024-11, Vol.481, p.128950, Article 128950 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_amc_2024_128950 |
source | Elsevier; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Delay Noncanonical operators Nonlinear Oscillation Third-order |
title | Remarks on the oscillation of nonlinear third-order noncanonical delay differential equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remarks%20on%20the%20oscillation%20of%20nonlinear%20third-order%20noncanonical%20delay%20differential%20equations&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Prabaharan,%20Natarajan&rft.date=2024-11-15&rft.volume=481&rft.spage=128950&rft.pages=128950-&rft.artnum=128950&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2024.128950&rft_dat=%3Celsevier_cross%3ES0096300324004119%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-b433fe33b42b80a2c8069c83af167cf2656061ddb491a933bc6d88ed466303463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |