Loading…

Remarks on the oscillation of nonlinear third-order noncanonical delay differential equations

This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. Our approach to establishing new criteria essentially simplifies and refines the main results obtained in Džurina and Jadlovská (2018) and Grac...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2024-11, Vol.481, p.128950, Article 128950
Main Authors: Prabaharan, Natarajan, Madhan, Mayakrishnan, Thandapani, Ethiraju, Tunç, Ercan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c179t-b433fe33b42b80a2c8069c83af167cf2656061ddb491a933bc6d88ed466303463
container_end_page
container_issue
container_start_page 128950
container_title Applied mathematics and computation
container_volume 481
creator Prabaharan, Natarajan
Madhan, Mayakrishnan
Thandapani, Ethiraju
Tunç, Ercan
description This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. Our approach to establishing new criteria essentially simplifies and refines the main results obtained in Džurina and Jadlovská (2018) and Grace et al. (2019). Examples illustrating the importance of our results are presented. •This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. We first transform the studied nonlinear noncanonical third-order delay differential equation into semi-canonical type. This approach simplifies the examination of the considered equation. Moreover, our approach to establishing new criteria substantially improves and extends some known results in the relevant literature.
doi_str_mv 10.1016/j.amc.2024.128950
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_amc_2024_128950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300324004119</els_id><sourcerecordid>S0096300324004119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-b433fe33b42b80a2c8069c83af167cf2656061ddb491a933bc6d88ed466303463</originalsourceid><addsrcrecordid>eNp9UMFKAzEQDaJgrX6At_2BXSebNJvgSYpaoSCIHiVkkwmmbjearEL_3tR69jLDvJn3mPcIuaTQUKDiatOYrW1aaHlDW6kWcERmVHasXgiujskMQImaAbBTcpbzBgA6QfmMvD7h1qT3XMWxmt6witmGYTBTKHP01RjHIYxoUlmG5OqYHKY9ak0pwZqhcjiYXeWC95hwnEKB8PPrVyGfkxNvhowXf31OXu5un5erev14_7C8WdeWdmqqe86YR8Z63vYSTGslCGUlM56KzvpWLAQI6lzPFTWq3FnhpETHhWDAuGBzQg-6NsWcE3r9kULxtdMU9D4fvdElH73PRx_yKZzrAwfLY98Bky7WcbToQkI7aRfDP-wfgIRu6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Remarks on the oscillation of nonlinear third-order noncanonical delay differential equations</title><source>Elsevier</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Prabaharan, Natarajan ; Madhan, Mayakrishnan ; Thandapani, Ethiraju ; Tunç, Ercan</creator><creatorcontrib>Prabaharan, Natarajan ; Madhan, Mayakrishnan ; Thandapani, Ethiraju ; Tunç, Ercan</creatorcontrib><description>This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. Our approach to establishing new criteria essentially simplifies and refines the main results obtained in Džurina and Jadlovská (2018) and Grace et al. (2019). Examples illustrating the importance of our results are presented. •This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. We first transform the studied nonlinear noncanonical third-order delay differential equation into semi-canonical type. This approach simplifies the examination of the considered equation. Moreover, our approach to establishing new criteria substantially improves and extends some known results in the relevant literature.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2024.128950</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Delay ; Noncanonical operators ; Nonlinear ; Oscillation ; Third-order</subject><ispartof>Applied mathematics and computation, 2024-11, Vol.481, p.128950, Article 128950</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-b433fe33b42b80a2c8069c83af167cf2656061ddb491a933bc6d88ed466303463</cites><orcidid>0000-0002-7364-2480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300324004119$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3416,3551,27905,27906,45953,45984</link.rule.ids></links><search><creatorcontrib>Prabaharan, Natarajan</creatorcontrib><creatorcontrib>Madhan, Mayakrishnan</creatorcontrib><creatorcontrib>Thandapani, Ethiraju</creatorcontrib><creatorcontrib>Tunç, Ercan</creatorcontrib><title>Remarks on the oscillation of nonlinear third-order noncanonical delay differential equations</title><title>Applied mathematics and computation</title><description>This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. Our approach to establishing new criteria essentially simplifies and refines the main results obtained in Džurina and Jadlovská (2018) and Grace et al. (2019). Examples illustrating the importance of our results are presented. •This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. We first transform the studied nonlinear noncanonical third-order delay differential equation into semi-canonical type. This approach simplifies the examination of the considered equation. Moreover, our approach to establishing new criteria substantially improves and extends some known results in the relevant literature.</description><subject>Delay</subject><subject>Noncanonical operators</subject><subject>Nonlinear</subject><subject>Oscillation</subject><subject>Third-order</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEQDaJgrX6At_2BXSebNJvgSYpaoSCIHiVkkwmmbjearEL_3tR69jLDvJn3mPcIuaTQUKDiatOYrW1aaHlDW6kWcERmVHasXgiujskMQImaAbBTcpbzBgA6QfmMvD7h1qT3XMWxmt6witmGYTBTKHP01RjHIYxoUlmG5OqYHKY9ak0pwZqhcjiYXeWC95hwnEKB8PPrVyGfkxNvhowXf31OXu5un5erev14_7C8WdeWdmqqe86YR8Z63vYSTGslCGUlM56KzvpWLAQI6lzPFTWq3FnhpETHhWDAuGBzQg-6NsWcE3r9kULxtdMU9D4fvdElH73PRx_yKZzrAwfLY98Bky7WcbToQkI7aRfDP-wfgIRu6w</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Prabaharan, Natarajan</creator><creator>Madhan, Mayakrishnan</creator><creator>Thandapani, Ethiraju</creator><creator>Tunç, Ercan</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7364-2480</orcidid></search><sort><creationdate>20241115</creationdate><title>Remarks on the oscillation of nonlinear third-order noncanonical delay differential equations</title><author>Prabaharan, Natarajan ; Madhan, Mayakrishnan ; Thandapani, Ethiraju ; Tunç, Ercan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-b433fe33b42b80a2c8069c83af167cf2656061ddb491a933bc6d88ed466303463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Delay</topic><topic>Noncanonical operators</topic><topic>Nonlinear</topic><topic>Oscillation</topic><topic>Third-order</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prabaharan, Natarajan</creatorcontrib><creatorcontrib>Madhan, Mayakrishnan</creatorcontrib><creatorcontrib>Thandapani, Ethiraju</creatorcontrib><creatorcontrib>Tunç, Ercan</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prabaharan, Natarajan</au><au>Madhan, Mayakrishnan</au><au>Thandapani, Ethiraju</au><au>Tunç, Ercan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remarks on the oscillation of nonlinear third-order noncanonical delay differential equations</atitle><jtitle>Applied mathematics and computation</jtitle><date>2024-11-15</date><risdate>2024</risdate><volume>481</volume><spage>128950</spage><pages>128950-</pages><artnum>128950</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. Our approach to establishing new criteria essentially simplifies and refines the main results obtained in Džurina and Jadlovská (2018) and Grace et al. (2019). Examples illustrating the importance of our results are presented. •This paper presents new criteria for the oscillation of all solutions of the third-order nonlinear delay differential equations with noncanonical operators. We first transform the studied nonlinear noncanonical third-order delay differential equation into semi-canonical type. This approach simplifies the examination of the considered equation. Moreover, our approach to establishing new criteria substantially improves and extends some known results in the relevant literature.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2024.128950</doi><orcidid>https://orcid.org/0000-0002-7364-2480</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2024-11, Vol.481, p.128950, Article 128950
issn 0096-3003
1873-5649
language eng
recordid cdi_crossref_primary_10_1016_j_amc_2024_128950
source Elsevier; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
subjects Delay
Noncanonical operators
Nonlinear
Oscillation
Third-order
title Remarks on the oscillation of nonlinear third-order noncanonical delay differential equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remarks%20on%20the%20oscillation%20of%20nonlinear%20third-order%20noncanonical%20delay%20differential%20equations&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Prabaharan,%20Natarajan&rft.date=2024-11-15&rft.volume=481&rft.spage=128950&rft.pages=128950-&rft.artnum=128950&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2024.128950&rft_dat=%3Celsevier_cross%3ES0096300324004119%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-b433fe33b42b80a2c8069c83af167cf2656061ddb491a933bc6d88ed466303463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true