Loading…
A smooth soliton solution and a periodic cuspon solution of the Novikov equation
In this paper, solutions of a Novikov equation are discussed based on the bifurcation method of dynamical systems. Through establishing a Hamiltonian function, the existence of a smooth soliton solution and a periodic cuspon solution are established for the corresponding traveling wave system of the...
Saved in:
Published in: | Applied mathematics letters 2021-02, Vol.112, p.106786, Article 106786 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c297t-2be37ab65c68ba6648f949158567ecb164e696dbc44dcac66a00cdea063b3a83 |
---|---|
cites | cdi_FETCH-LOGICAL-c297t-2be37ab65c68ba6648f949158567ecb164e696dbc44dcac66a00cdea063b3a83 |
container_end_page | |
container_issue | |
container_start_page | 106786 |
container_title | Applied mathematics letters |
container_volume | 112 |
creator | Zheng, Xiaoxiao Xiao, Qizhen Ouyang, Zigen |
description | In this paper, solutions of a Novikov equation are discussed based on the bifurcation method of dynamical systems. Through establishing a Hamiltonian function, the existence of a smooth soliton solution and a periodic cuspon solution are established for the corresponding traveling wave system of the Novikov equation. Numerical results are carried out to illustrate the feasibility of the main results. All these theories can be seen to fill the gap of the literatures Li (2014) and Pan and Li (2016). |
doi_str_mv | 10.1016/j.aml.2020.106786 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_aml_2020_106786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893965920303980</els_id><sourcerecordid>S0893965920303980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-2be37ab65c68ba6648f949158567ecb164e696dbc44dcac66a00cdea063b3a83</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAez8Ayl2nExssaoqXhICFt1bzniiurR1sdNK_D2JyoIVqzsPndHoMHYrxUwKCXfrmdtuZqUoxx4aDWdsInWjirqqy3M2EdqowkBtLtlVzmshhDJKT9jHnOdtjP2K57gJfdyNeejDULid547vKYXoA3I85P3fdex4vyL-Fo_hMx45fR3cOL9mF53bZLr5zSlbPj4sF8_F6_vTy2L-WmBpmr4oW1KNa6FG0K0DqHRnKiNrXUND2EqoCAz4FqvKo0MAJwR6cgJUq5xWUyZPZzHFnBN1dp_C1qVvK4Udjdi1HYzY0Yg9GRmY-xNDw1_HQMlmDLRD8iER9tbH8A_9A9RHanc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A smooth soliton solution and a periodic cuspon solution of the Novikov equation</title><source>ScienceDirect Journals</source><creator>Zheng, Xiaoxiao ; Xiao, Qizhen ; Ouyang, Zigen</creator><creatorcontrib>Zheng, Xiaoxiao ; Xiao, Qizhen ; Ouyang, Zigen</creatorcontrib><description>In this paper, solutions of a Novikov equation are discussed based on the bifurcation method of dynamical systems. Through establishing a Hamiltonian function, the existence of a smooth soliton solution and a periodic cuspon solution are established for the corresponding traveling wave system of the Novikov equation. Numerical results are carried out to illustrate the feasibility of the main results. All these theories can be seen to fill the gap of the literatures Li (2014) and Pan and Li (2016).</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2020.106786</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bifurcation method ; Novikov equation ; Periodic cuspon solution ; Soliton solution</subject><ispartof>Applied mathematics letters, 2021-02, Vol.112, p.106786, Article 106786</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-2be37ab65c68ba6648f949158567ecb164e696dbc44dcac66a00cdea063b3a83</citedby><cites>FETCH-LOGICAL-c297t-2be37ab65c68ba6648f949158567ecb164e696dbc44dcac66a00cdea063b3a83</cites><orcidid>0000-0002-2158-2711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Xiaoxiao</creatorcontrib><creatorcontrib>Xiao, Qizhen</creatorcontrib><creatorcontrib>Ouyang, Zigen</creatorcontrib><title>A smooth soliton solution and a periodic cuspon solution of the Novikov equation</title><title>Applied mathematics letters</title><description>In this paper, solutions of a Novikov equation are discussed based on the bifurcation method of dynamical systems. Through establishing a Hamiltonian function, the existence of a smooth soliton solution and a periodic cuspon solution are established for the corresponding traveling wave system of the Novikov equation. Numerical results are carried out to illustrate the feasibility of the main results. All these theories can be seen to fill the gap of the literatures Li (2014) and Pan and Li (2016).</description><subject>Bifurcation method</subject><subject>Novikov equation</subject><subject>Periodic cuspon solution</subject><subject>Soliton solution</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAez8Ayl2nExssaoqXhICFt1bzniiurR1sdNK_D2JyoIVqzsPndHoMHYrxUwKCXfrmdtuZqUoxx4aDWdsInWjirqqy3M2EdqowkBtLtlVzmshhDJKT9jHnOdtjP2K57gJfdyNeejDULid547vKYXoA3I85P3fdex4vyL-Fo_hMx45fR3cOL9mF53bZLr5zSlbPj4sF8_F6_vTy2L-WmBpmr4oW1KNa6FG0K0DqHRnKiNrXUND2EqoCAz4FqvKo0MAJwR6cgJUq5xWUyZPZzHFnBN1dp_C1qVvK4Udjdi1HYzY0Yg9GRmY-xNDw1_HQMlmDLRD8iER9tbH8A_9A9RHanc</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Zheng, Xiaoxiao</creator><creator>Xiao, Qizhen</creator><creator>Ouyang, Zigen</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2158-2711</orcidid></search><sort><creationdate>202102</creationdate><title>A smooth soliton solution and a periodic cuspon solution of the Novikov equation</title><author>Zheng, Xiaoxiao ; Xiao, Qizhen ; Ouyang, Zigen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-2be37ab65c68ba6648f949158567ecb164e696dbc44dcac66a00cdea063b3a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bifurcation method</topic><topic>Novikov equation</topic><topic>Periodic cuspon solution</topic><topic>Soliton solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiaoxiao</creatorcontrib><creatorcontrib>Xiao, Qizhen</creatorcontrib><creatorcontrib>Ouyang, Zigen</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiaoxiao</au><au>Xiao, Qizhen</au><au>Ouyang, Zigen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A smooth soliton solution and a periodic cuspon solution of the Novikov equation</atitle><jtitle>Applied mathematics letters</jtitle><date>2021-02</date><risdate>2021</risdate><volume>112</volume><spage>106786</spage><pages>106786-</pages><artnum>106786</artnum><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>In this paper, solutions of a Novikov equation are discussed based on the bifurcation method of dynamical systems. Through establishing a Hamiltonian function, the existence of a smooth soliton solution and a periodic cuspon solution are established for the corresponding traveling wave system of the Novikov equation. Numerical results are carried out to illustrate the feasibility of the main results. All these theories can be seen to fill the gap of the literatures Li (2014) and Pan and Li (2016).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2020.106786</doi><orcidid>https://orcid.org/0000-0002-2158-2711</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-9659 |
ispartof | Applied mathematics letters, 2021-02, Vol.112, p.106786, Article 106786 |
issn | 0893-9659 1873-5452 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_aml_2020_106786 |
source | ScienceDirect Journals |
subjects | Bifurcation method Novikov equation Periodic cuspon solution Soliton solution |
title | A smooth soliton solution and a periodic cuspon solution of the Novikov equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20smooth%20soliton%20solution%20and%20a%20periodic%20cuspon%20solution%20of%20the%20Novikov%20equation&rft.jtitle=Applied%20mathematics%20letters&rft.au=Zheng,%20Xiaoxiao&rft.date=2021-02&rft.volume=112&rft.spage=106786&rft.pages=106786-&rft.artnum=106786&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2020.106786&rft_dat=%3Celsevier_cross%3ES0893965920303980%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-2be37ab65c68ba6648f949158567ecb164e696dbc44dcac66a00cdea063b3a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |