Loading…

A smooth soliton solution and a periodic cuspon solution of the Novikov equation

In this paper, solutions of a Novikov equation are discussed based on the bifurcation method of dynamical systems. Through establishing a Hamiltonian function, the existence of a smooth soliton solution and a periodic cuspon solution are established for the corresponding traveling wave system of the...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics letters 2021-02, Vol.112, p.106786, Article 106786
Main Authors: Zheng, Xiaoxiao, Xiao, Qizhen, Ouyang, Zigen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-2be37ab65c68ba6648f949158567ecb164e696dbc44dcac66a00cdea063b3a83
cites cdi_FETCH-LOGICAL-c297t-2be37ab65c68ba6648f949158567ecb164e696dbc44dcac66a00cdea063b3a83
container_end_page
container_issue
container_start_page 106786
container_title Applied mathematics letters
container_volume 112
creator Zheng, Xiaoxiao
Xiao, Qizhen
Ouyang, Zigen
description In this paper, solutions of a Novikov equation are discussed based on the bifurcation method of dynamical systems. Through establishing a Hamiltonian function, the existence of a smooth soliton solution and a periodic cuspon solution are established for the corresponding traveling wave system of the Novikov equation. Numerical results are carried out to illustrate the feasibility of the main results. All these theories can be seen to fill the gap of the literatures Li (2014) and Pan and Li (2016).
doi_str_mv 10.1016/j.aml.2020.106786
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_aml_2020_106786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893965920303980</els_id><sourcerecordid>S0893965920303980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-2be37ab65c68ba6648f949158567ecb164e696dbc44dcac66a00cdea063b3a83</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAez8Ayl2nExssaoqXhICFt1bzniiurR1sdNK_D2JyoIVqzsPndHoMHYrxUwKCXfrmdtuZqUoxx4aDWdsInWjirqqy3M2EdqowkBtLtlVzmshhDJKT9jHnOdtjP2K57gJfdyNeejDULid547vKYXoA3I85P3fdex4vyL-Fo_hMx45fR3cOL9mF53bZLr5zSlbPj4sF8_F6_vTy2L-WmBpmr4oW1KNa6FG0K0DqHRnKiNrXUND2EqoCAz4FqvKo0MAJwR6cgJUq5xWUyZPZzHFnBN1dp_C1qVvK4Udjdi1HYzY0Yg9GRmY-xNDw1_HQMlmDLRD8iER9tbH8A_9A9RHanc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A smooth soliton solution and a periodic cuspon solution of the Novikov equation</title><source>ScienceDirect Journals</source><creator>Zheng, Xiaoxiao ; Xiao, Qizhen ; Ouyang, Zigen</creator><creatorcontrib>Zheng, Xiaoxiao ; Xiao, Qizhen ; Ouyang, Zigen</creatorcontrib><description>In this paper, solutions of a Novikov equation are discussed based on the bifurcation method of dynamical systems. Through establishing a Hamiltonian function, the existence of a smooth soliton solution and a periodic cuspon solution are established for the corresponding traveling wave system of the Novikov equation. Numerical results are carried out to illustrate the feasibility of the main results. All these theories can be seen to fill the gap of the literatures Li (2014) and Pan and Li (2016).</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2020.106786</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bifurcation method ; Novikov equation ; Periodic cuspon solution ; Soliton solution</subject><ispartof>Applied mathematics letters, 2021-02, Vol.112, p.106786, Article 106786</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-2be37ab65c68ba6648f949158567ecb164e696dbc44dcac66a00cdea063b3a83</citedby><cites>FETCH-LOGICAL-c297t-2be37ab65c68ba6648f949158567ecb164e696dbc44dcac66a00cdea063b3a83</cites><orcidid>0000-0002-2158-2711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Xiaoxiao</creatorcontrib><creatorcontrib>Xiao, Qizhen</creatorcontrib><creatorcontrib>Ouyang, Zigen</creatorcontrib><title>A smooth soliton solution and a periodic cuspon solution of the Novikov equation</title><title>Applied mathematics letters</title><description>In this paper, solutions of a Novikov equation are discussed based on the bifurcation method of dynamical systems. Through establishing a Hamiltonian function, the existence of a smooth soliton solution and a periodic cuspon solution are established for the corresponding traveling wave system of the Novikov equation. Numerical results are carried out to illustrate the feasibility of the main results. All these theories can be seen to fill the gap of the literatures Li (2014) and Pan and Li (2016).</description><subject>Bifurcation method</subject><subject>Novikov equation</subject><subject>Periodic cuspon solution</subject><subject>Soliton solution</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAez8Ayl2nExssaoqXhICFt1bzniiurR1sdNK_D2JyoIVqzsPndHoMHYrxUwKCXfrmdtuZqUoxx4aDWdsInWjirqqy3M2EdqowkBtLtlVzmshhDJKT9jHnOdtjP2K57gJfdyNeejDULid547vKYXoA3I85P3fdex4vyL-Fo_hMx45fR3cOL9mF53bZLr5zSlbPj4sF8_F6_vTy2L-WmBpmr4oW1KNa6FG0K0DqHRnKiNrXUND2EqoCAz4FqvKo0MAJwR6cgJUq5xWUyZPZzHFnBN1dp_C1qVvK4Udjdi1HYzY0Yg9GRmY-xNDw1_HQMlmDLRD8iER9tbH8A_9A9RHanc</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Zheng, Xiaoxiao</creator><creator>Xiao, Qizhen</creator><creator>Ouyang, Zigen</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2158-2711</orcidid></search><sort><creationdate>202102</creationdate><title>A smooth soliton solution and a periodic cuspon solution of the Novikov equation</title><author>Zheng, Xiaoxiao ; Xiao, Qizhen ; Ouyang, Zigen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-2be37ab65c68ba6648f949158567ecb164e696dbc44dcac66a00cdea063b3a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bifurcation method</topic><topic>Novikov equation</topic><topic>Periodic cuspon solution</topic><topic>Soliton solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiaoxiao</creatorcontrib><creatorcontrib>Xiao, Qizhen</creatorcontrib><creatorcontrib>Ouyang, Zigen</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiaoxiao</au><au>Xiao, Qizhen</au><au>Ouyang, Zigen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A smooth soliton solution and a periodic cuspon solution of the Novikov equation</atitle><jtitle>Applied mathematics letters</jtitle><date>2021-02</date><risdate>2021</risdate><volume>112</volume><spage>106786</spage><pages>106786-</pages><artnum>106786</artnum><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>In this paper, solutions of a Novikov equation are discussed based on the bifurcation method of dynamical systems. Through establishing a Hamiltonian function, the existence of a smooth soliton solution and a periodic cuspon solution are established for the corresponding traveling wave system of the Novikov equation. Numerical results are carried out to illustrate the feasibility of the main results. All these theories can be seen to fill the gap of the literatures Li (2014) and Pan and Li (2016).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2020.106786</doi><orcidid>https://orcid.org/0000-0002-2158-2711</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-9659
ispartof Applied mathematics letters, 2021-02, Vol.112, p.106786, Article 106786
issn 0893-9659
1873-5452
language eng
recordid cdi_crossref_primary_10_1016_j_aml_2020_106786
source ScienceDirect Journals
subjects Bifurcation method
Novikov equation
Periodic cuspon solution
Soliton solution
title A smooth soliton solution and a periodic cuspon solution of the Novikov equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20smooth%20soliton%20solution%20and%20a%20periodic%20cuspon%20solution%20of%20the%20Novikov%20equation&rft.jtitle=Applied%20mathematics%20letters&rft.au=Zheng,%20Xiaoxiao&rft.date=2021-02&rft.volume=112&rft.spage=106786&rft.pages=106786-&rft.artnum=106786&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2020.106786&rft_dat=%3Celsevier_cross%3ES0893965920303980%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-2be37ab65c68ba6648f949158567ecb164e696dbc44dcac66a00cdea063b3a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true