Loading…

A nonlinear anisotropic diffusion model with non-standard growth for image segmentation

The anisotropic diffusion equation with non-standard growth embodies the physical characteristics of “point-by-point anisotropy” as well as has important potential value in computer vision. In this paper, a general anisotropic diffusion framework of the level set function is proposed for image segme...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics letters 2023-07, Vol.141, p.108627, Article 108627
Main Authors: Yang, Jiabao, Guo, Zhichang, Wu, Boying, Du, Shan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-fbdeccbaa359074e62bf8c0900c1f404f0e81224f91918f0322cc9b9410306613
cites cdi_FETCH-LOGICAL-c297t-fbdeccbaa359074e62bf8c0900c1f404f0e81224f91918f0322cc9b9410306613
container_end_page
container_issue
container_start_page 108627
container_title Applied mathematics letters
container_volume 141
creator Yang, Jiabao
Guo, Zhichang
Wu, Boying
Du, Shan
description The anisotropic diffusion equation with non-standard growth embodies the physical characteristics of “point-by-point anisotropy” as well as has important potential value in computer vision. In this paper, a general anisotropic diffusion framework of the level set function is proposed for image segmentation in scalar-value and vector-value images. Specifically, we develop a new regularization term that uses a diffusion coefficient with non-standard growth conditions and diffusion tensors. The existence and uniqueness of the model are obtained by the Galerkin method. We establish the numerical algorithms for obtaining the texture feature and evolving the level set function of images. Some numerical tests on medical and natural images confirm the accuracy of the proposed method and the improvement in segmenting small features.
doi_str_mv 10.1016/j.aml.2023.108627
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_aml_2023_108627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893965923000599</els_id><sourcerecordid>S0893965923000599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-fbdeccbaa359074e62bf8c0900c1f404f0e81224f91918f0322cc9b9410306613</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFv-wNZJsl_BUyl-QcGL4jFks5OaspuUJFr89-5Sz56GGd5neHkIuWWwYsDqu_1Kj8OKAxfT3ta8OSML1jaiqMqKn5MFtFIUsq7kJblKaQ8AQop2QT7W1Ac_OI86Uu1dCjmGgzO0d9Z-JRc8HUOPAz26_DlHi5S173Xs6S6G43SzIVI36h3ShLsRfdZ5oq7JhdVDwpu_uSTvjw9vm-di-_r0sllvC8Nlkwvb9WhMp7WoJDQl1ryzrQEJYJgtobSALeO8tJJJ1loQnBsjO1kyEFDXTCwJO_01MaQU0apDnNrEH8VAzWbUXk1m1GxGncxMzP2JwanYt8OoknHoDfYuosmqD-4f-hfDVGzV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A nonlinear anisotropic diffusion model with non-standard growth for image segmentation</title><source>ScienceDirect Freedom Collection</source><creator>Yang, Jiabao ; Guo, Zhichang ; Wu, Boying ; Du, Shan</creator><creatorcontrib>Yang, Jiabao ; Guo, Zhichang ; Wu, Boying ; Du, Shan</creatorcontrib><description>The anisotropic diffusion equation with non-standard growth embodies the physical characteristics of “point-by-point anisotropy” as well as has important potential value in computer vision. In this paper, a general anisotropic diffusion framework of the level set function is proposed for image segmentation in scalar-value and vector-value images. Specifically, we develop a new regularization term that uses a diffusion coefficient with non-standard growth conditions and diffusion tensors. The existence and uniqueness of the model are obtained by the Galerkin method. We establish the numerical algorithms for obtaining the texture feature and evolving the level set function of images. Some numerical tests on medical and natural images confirm the accuracy of the proposed method and the improvement in segmenting small features.</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2023.108627</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Image segmentation ; Non-standard growth conditions ; Nonlinear anisotropic diffusion equations ; The level set</subject><ispartof>Applied mathematics letters, 2023-07, Vol.141, p.108627, Article 108627</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-fbdeccbaa359074e62bf8c0900c1f404f0e81224f91918f0322cc9b9410306613</citedby><cites>FETCH-LOGICAL-c297t-fbdeccbaa359074e62bf8c0900c1f404f0e81224f91918f0322cc9b9410306613</cites><orcidid>0000-0002-6602-1061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yang, Jiabao</creatorcontrib><creatorcontrib>Guo, Zhichang</creatorcontrib><creatorcontrib>Wu, Boying</creatorcontrib><creatorcontrib>Du, Shan</creatorcontrib><title>A nonlinear anisotropic diffusion model with non-standard growth for image segmentation</title><title>Applied mathematics letters</title><description>The anisotropic diffusion equation with non-standard growth embodies the physical characteristics of “point-by-point anisotropy” as well as has important potential value in computer vision. In this paper, a general anisotropic diffusion framework of the level set function is proposed for image segmentation in scalar-value and vector-value images. Specifically, we develop a new regularization term that uses a diffusion coefficient with non-standard growth conditions and diffusion tensors. The existence and uniqueness of the model are obtained by the Galerkin method. We establish the numerical algorithms for obtaining the texture feature and evolving the level set function of images. Some numerical tests on medical and natural images confirm the accuracy of the proposed method and the improvement in segmenting small features.</description><subject>Image segmentation</subject><subject>Non-standard growth conditions</subject><subject>Nonlinear anisotropic diffusion equations</subject><subject>The level set</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFv-wNZJsl_BUyl-QcGL4jFks5OaspuUJFr89-5Sz56GGd5neHkIuWWwYsDqu_1Kj8OKAxfT3ta8OSML1jaiqMqKn5MFtFIUsq7kJblKaQ8AQop2QT7W1Ac_OI86Uu1dCjmGgzO0d9Z-JRc8HUOPAz26_DlHi5S173Xs6S6G43SzIVI36h3ShLsRfdZ5oq7JhdVDwpu_uSTvjw9vm-di-_r0sllvC8Nlkwvb9WhMp7WoJDQl1ryzrQEJYJgtobSALeO8tJJJ1loQnBsjO1kyEFDXTCwJO_01MaQU0apDnNrEH8VAzWbUXk1m1GxGncxMzP2JwanYt8OoknHoDfYuosmqD-4f-hfDVGzV</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Yang, Jiabao</creator><creator>Guo, Zhichang</creator><creator>Wu, Boying</creator><creator>Du, Shan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6602-1061</orcidid></search><sort><creationdate>202307</creationdate><title>A nonlinear anisotropic diffusion model with non-standard growth for image segmentation</title><author>Yang, Jiabao ; Guo, Zhichang ; Wu, Boying ; Du, Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-fbdeccbaa359074e62bf8c0900c1f404f0e81224f91918f0322cc9b9410306613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Image segmentation</topic><topic>Non-standard growth conditions</topic><topic>Nonlinear anisotropic diffusion equations</topic><topic>The level set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jiabao</creatorcontrib><creatorcontrib>Guo, Zhichang</creatorcontrib><creatorcontrib>Wu, Boying</creatorcontrib><creatorcontrib>Du, Shan</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jiabao</au><au>Guo, Zhichang</au><au>Wu, Boying</au><au>Du, Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonlinear anisotropic diffusion model with non-standard growth for image segmentation</atitle><jtitle>Applied mathematics letters</jtitle><date>2023-07</date><risdate>2023</risdate><volume>141</volume><spage>108627</spage><pages>108627-</pages><artnum>108627</artnum><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>The anisotropic diffusion equation with non-standard growth embodies the physical characteristics of “point-by-point anisotropy” as well as has important potential value in computer vision. In this paper, a general anisotropic diffusion framework of the level set function is proposed for image segmentation in scalar-value and vector-value images. Specifically, we develop a new regularization term that uses a diffusion coefficient with non-standard growth conditions and diffusion tensors. The existence and uniqueness of the model are obtained by the Galerkin method. We establish the numerical algorithms for obtaining the texture feature and evolving the level set function of images. Some numerical tests on medical and natural images confirm the accuracy of the proposed method and the improvement in segmenting small features.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2023.108627</doi><orcidid>https://orcid.org/0000-0002-6602-1061</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-9659
ispartof Applied mathematics letters, 2023-07, Vol.141, p.108627, Article 108627
issn 0893-9659
1873-5452
language eng
recordid cdi_crossref_primary_10_1016_j_aml_2023_108627
source ScienceDirect Freedom Collection
subjects Image segmentation
Non-standard growth conditions
Nonlinear anisotropic diffusion equations
The level set
title A nonlinear anisotropic diffusion model with non-standard growth for image segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonlinear%20anisotropic%20diffusion%20model%20with%20non-standard%20growth%20for%20image%20segmentation&rft.jtitle=Applied%20mathematics%20letters&rft.au=Yang,%20Jiabao&rft.date=2023-07&rft.volume=141&rft.spage=108627&rft.pages=108627-&rft.artnum=108627&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2023.108627&rft_dat=%3Celsevier_cross%3ES0893965923000599%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-fbdeccbaa359074e62bf8c0900c1f404f0e81224f91918f0322cc9b9410306613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true