Loading…
A nonlinear anisotropic diffusion model with non-standard growth for image segmentation
The anisotropic diffusion equation with non-standard growth embodies the physical characteristics of “point-by-point anisotropy” as well as has important potential value in computer vision. In this paper, a general anisotropic diffusion framework of the level set function is proposed for image segme...
Saved in:
Published in: | Applied mathematics letters 2023-07, Vol.141, p.108627, Article 108627 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c297t-fbdeccbaa359074e62bf8c0900c1f404f0e81224f91918f0322cc9b9410306613 |
---|---|
cites | cdi_FETCH-LOGICAL-c297t-fbdeccbaa359074e62bf8c0900c1f404f0e81224f91918f0322cc9b9410306613 |
container_end_page | |
container_issue | |
container_start_page | 108627 |
container_title | Applied mathematics letters |
container_volume | 141 |
creator | Yang, Jiabao Guo, Zhichang Wu, Boying Du, Shan |
description | The anisotropic diffusion equation with non-standard growth embodies the physical characteristics of “point-by-point anisotropy” as well as has important potential value in computer vision. In this paper, a general anisotropic diffusion framework of the level set function is proposed for image segmentation in scalar-value and vector-value images. Specifically, we develop a new regularization term that uses a diffusion coefficient with non-standard growth conditions and diffusion tensors. The existence and uniqueness of the model are obtained by the Galerkin method. We establish the numerical algorithms for obtaining the texture feature and evolving the level set function of images. Some numerical tests on medical and natural images confirm the accuracy of the proposed method and the improvement in segmenting small features. |
doi_str_mv | 10.1016/j.aml.2023.108627 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_aml_2023_108627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893965923000599</els_id><sourcerecordid>S0893965923000599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-fbdeccbaa359074e62bf8c0900c1f404f0e81224f91918f0322cc9b9410306613</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFv-wNZJsl_BUyl-QcGL4jFks5OaspuUJFr89-5Sz56GGd5neHkIuWWwYsDqu_1Kj8OKAxfT3ta8OSML1jaiqMqKn5MFtFIUsq7kJblKaQ8AQop2QT7W1Ac_OI86Uu1dCjmGgzO0d9Z-JRc8HUOPAz26_DlHi5S173Xs6S6G43SzIVI36h3ShLsRfdZ5oq7JhdVDwpu_uSTvjw9vm-di-_r0sllvC8Nlkwvb9WhMp7WoJDQl1ryzrQEJYJgtobSALeO8tJJJ1loQnBsjO1kyEFDXTCwJO_01MaQU0apDnNrEH8VAzWbUXk1m1GxGncxMzP2JwanYt8OoknHoDfYuosmqD-4f-hfDVGzV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A nonlinear anisotropic diffusion model with non-standard growth for image segmentation</title><source>ScienceDirect Freedom Collection</source><creator>Yang, Jiabao ; Guo, Zhichang ; Wu, Boying ; Du, Shan</creator><creatorcontrib>Yang, Jiabao ; Guo, Zhichang ; Wu, Boying ; Du, Shan</creatorcontrib><description>The anisotropic diffusion equation with non-standard growth embodies the physical characteristics of “point-by-point anisotropy” as well as has important potential value in computer vision. In this paper, a general anisotropic diffusion framework of the level set function is proposed for image segmentation in scalar-value and vector-value images. Specifically, we develop a new regularization term that uses a diffusion coefficient with non-standard growth conditions and diffusion tensors. The existence and uniqueness of the model are obtained by the Galerkin method. We establish the numerical algorithms for obtaining the texture feature and evolving the level set function of images. Some numerical tests on medical and natural images confirm the accuracy of the proposed method and the improvement in segmenting small features.</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2023.108627</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Image segmentation ; Non-standard growth conditions ; Nonlinear anisotropic diffusion equations ; The level set</subject><ispartof>Applied mathematics letters, 2023-07, Vol.141, p.108627, Article 108627</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-fbdeccbaa359074e62bf8c0900c1f404f0e81224f91918f0322cc9b9410306613</citedby><cites>FETCH-LOGICAL-c297t-fbdeccbaa359074e62bf8c0900c1f404f0e81224f91918f0322cc9b9410306613</cites><orcidid>0000-0002-6602-1061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yang, Jiabao</creatorcontrib><creatorcontrib>Guo, Zhichang</creatorcontrib><creatorcontrib>Wu, Boying</creatorcontrib><creatorcontrib>Du, Shan</creatorcontrib><title>A nonlinear anisotropic diffusion model with non-standard growth for image segmentation</title><title>Applied mathematics letters</title><description>The anisotropic diffusion equation with non-standard growth embodies the physical characteristics of “point-by-point anisotropy” as well as has important potential value in computer vision. In this paper, a general anisotropic diffusion framework of the level set function is proposed for image segmentation in scalar-value and vector-value images. Specifically, we develop a new regularization term that uses a diffusion coefficient with non-standard growth conditions and diffusion tensors. The existence and uniqueness of the model are obtained by the Galerkin method. We establish the numerical algorithms for obtaining the texture feature and evolving the level set function of images. Some numerical tests on medical and natural images confirm the accuracy of the proposed method and the improvement in segmenting small features.</description><subject>Image segmentation</subject><subject>Non-standard growth conditions</subject><subject>Nonlinear anisotropic diffusion equations</subject><subject>The level set</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFv-wNZJsl_BUyl-QcGL4jFks5OaspuUJFr89-5Sz56GGd5neHkIuWWwYsDqu_1Kj8OKAxfT3ta8OSML1jaiqMqKn5MFtFIUsq7kJblKaQ8AQop2QT7W1Ac_OI86Uu1dCjmGgzO0d9Z-JRc8HUOPAz26_DlHi5S173Xs6S6G43SzIVI36h3ShLsRfdZ5oq7JhdVDwpu_uSTvjw9vm-di-_r0sllvC8Nlkwvb9WhMp7WoJDQl1ryzrQEJYJgtobSALeO8tJJJ1loQnBsjO1kyEFDXTCwJO_01MaQU0apDnNrEH8VAzWbUXk1m1GxGncxMzP2JwanYt8OoknHoDfYuosmqD-4f-hfDVGzV</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Yang, Jiabao</creator><creator>Guo, Zhichang</creator><creator>Wu, Boying</creator><creator>Du, Shan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6602-1061</orcidid></search><sort><creationdate>202307</creationdate><title>A nonlinear anisotropic diffusion model with non-standard growth for image segmentation</title><author>Yang, Jiabao ; Guo, Zhichang ; Wu, Boying ; Du, Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-fbdeccbaa359074e62bf8c0900c1f404f0e81224f91918f0322cc9b9410306613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Image segmentation</topic><topic>Non-standard growth conditions</topic><topic>Nonlinear anisotropic diffusion equations</topic><topic>The level set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jiabao</creatorcontrib><creatorcontrib>Guo, Zhichang</creatorcontrib><creatorcontrib>Wu, Boying</creatorcontrib><creatorcontrib>Du, Shan</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jiabao</au><au>Guo, Zhichang</au><au>Wu, Boying</au><au>Du, Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonlinear anisotropic diffusion model with non-standard growth for image segmentation</atitle><jtitle>Applied mathematics letters</jtitle><date>2023-07</date><risdate>2023</risdate><volume>141</volume><spage>108627</spage><pages>108627-</pages><artnum>108627</artnum><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>The anisotropic diffusion equation with non-standard growth embodies the physical characteristics of “point-by-point anisotropy” as well as has important potential value in computer vision. In this paper, a general anisotropic diffusion framework of the level set function is proposed for image segmentation in scalar-value and vector-value images. Specifically, we develop a new regularization term that uses a diffusion coefficient with non-standard growth conditions and diffusion tensors. The existence and uniqueness of the model are obtained by the Galerkin method. We establish the numerical algorithms for obtaining the texture feature and evolving the level set function of images. Some numerical tests on medical and natural images confirm the accuracy of the proposed method and the improvement in segmenting small features.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2023.108627</doi><orcidid>https://orcid.org/0000-0002-6602-1061</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-9659 |
ispartof | Applied mathematics letters, 2023-07, Vol.141, p.108627, Article 108627 |
issn | 0893-9659 1873-5452 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_aml_2023_108627 |
source | ScienceDirect Freedom Collection |
subjects | Image segmentation Non-standard growth conditions Nonlinear anisotropic diffusion equations The level set |
title | A nonlinear anisotropic diffusion model with non-standard growth for image segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonlinear%20anisotropic%20diffusion%20model%20with%20non-standard%20growth%20for%20image%20segmentation&rft.jtitle=Applied%20mathematics%20letters&rft.au=Yang,%20Jiabao&rft.date=2023-07&rft.volume=141&rft.spage=108627&rft.pages=108627-&rft.artnum=108627&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2023.108627&rft_dat=%3Celsevier_cross%3ES0893965923000599%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-fbdeccbaa359074e62bf8c0900c1f404f0e81224f91918f0322cc9b9410306613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |