Loading…

Simultaneous uniqueness for the diffusion coefficient and initial value identification in a time-fractional diffusion equation

This article investigates the uniqueness of simultaneously determining the diffusion coefficient and initial value in a time-fractional diffusion equation with derivative order α∈(0,1). By additional boundary measurements and a priori assumption on the diffusion coefficient, the uniqueness of the ei...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics letters 2024-10, Vol.156, p.109149, Article 109149
Main Authors: Jing, Xiaohua, Jia, Junxiong, Song, Xueli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c249t-f7e7e44f9913945ce907e55ee8fa3f0c158347da41255dbf3c81e7664e0ffb3c3
container_end_page
container_issue
container_start_page 109149
container_title Applied mathematics letters
container_volume 156
creator Jing, Xiaohua
Jia, Junxiong
Song, Xueli
description This article investigates the uniqueness of simultaneously determining the diffusion coefficient and initial value in a time-fractional diffusion equation with derivative order α∈(0,1). By additional boundary measurements and a priori assumption on the diffusion coefficient, the uniqueness of the eigenvalues and an associated integral equation for the diffusion coefficient are firstly established. The proof is based on the Laplace transform and the expansion of eigenfunctions for the solution to the initial value/boundary value problem. Furthermore, by using these two results, the simultaneous uniqueness in determining the diffusion coefficient and initial value is demonstrated from the Liouville transform and Gelfand–Levitan theory. The result shows that the uniqueness in simultaneous identification can be achieved, provided the initial values non-orthogonality to the eigenfunction of differential operators, which incorporates only one diffusion coefficient rather than scenarios involving two diffusion coefficients.
doi_str_mv 10.1016/j.aml.2024.109149
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_aml_2024_109149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893965924001691</els_id><sourcerecordid>S0893965924001691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-f7e7e44f9913945ce907e55ee8fa3f0c158347da41255dbf3c81e7664e0ffb3c3</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxoMouK4-gLe8QNekSdoGT7L4DwQP6jlk0wnO0qZuki548dltXcGbp2Fmvu9j5kfIJWcrznh1tV3ZvluVrJRTr7nUR2TBm1oUSqrymCxYo0WhK6VPyVlKW8aY0KJZkK8X7Mcu2wDDmOgYcDdCgJSoHyLN70Bb9H5MOATqBvAeHULI1IaWYsCMtqN7241AsZ3mOO1tnsUYqKUZeyh8tG4eTcq_LNiNP7pzcuJtl-Dity7J293t6_qheHq-f1zfPBWulDoXvoYapPRac6GlcqBZDUoBNN4KzxxXjZB1ayUvlWo3XriGQ11VEpj3G-HEkvBDrotDShG8-YjY2_hpODMzQLM1E0AzAzQHgJPn-uCB6bA9QjRpft5BixFcNu2A_7i_AVPifM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simultaneous uniqueness for the diffusion coefficient and initial value identification in a time-fractional diffusion equation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Jing, Xiaohua ; Jia, Junxiong ; Song, Xueli</creator><creatorcontrib>Jing, Xiaohua ; Jia, Junxiong ; Song, Xueli</creatorcontrib><description>This article investigates the uniqueness of simultaneously determining the diffusion coefficient and initial value in a time-fractional diffusion equation with derivative order α∈(0,1). By additional boundary measurements and a priori assumption on the diffusion coefficient, the uniqueness of the eigenvalues and an associated integral equation for the diffusion coefficient are firstly established. The proof is based on the Laplace transform and the expansion of eigenfunctions for the solution to the initial value/boundary value problem. Furthermore, by using these two results, the simultaneous uniqueness in determining the diffusion coefficient and initial value is demonstrated from the Liouville transform and Gelfand–Levitan theory. The result shows that the uniqueness in simultaneous identification can be achieved, provided the initial values non-orthogonality to the eigenfunction of differential operators, which incorporates only one diffusion coefficient rather than scenarios involving two diffusion coefficients.</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2024.109149</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Fractional inverse problem ; Inverse coefficient problem ; Simultaneous uniqueness</subject><ispartof>Applied mathematics letters, 2024-10, Vol.156, p.109149, Article 109149</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-f7e7e44f9913945ce907e55ee8fa3f0c158347da41255dbf3c81e7664e0ffb3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jing, Xiaohua</creatorcontrib><creatorcontrib>Jia, Junxiong</creatorcontrib><creatorcontrib>Song, Xueli</creatorcontrib><title>Simultaneous uniqueness for the diffusion coefficient and initial value identification in a time-fractional diffusion equation</title><title>Applied mathematics letters</title><description>This article investigates the uniqueness of simultaneously determining the diffusion coefficient and initial value in a time-fractional diffusion equation with derivative order α∈(0,1). By additional boundary measurements and a priori assumption on the diffusion coefficient, the uniqueness of the eigenvalues and an associated integral equation for the diffusion coefficient are firstly established. The proof is based on the Laplace transform and the expansion of eigenfunctions for the solution to the initial value/boundary value problem. Furthermore, by using these two results, the simultaneous uniqueness in determining the diffusion coefficient and initial value is demonstrated from the Liouville transform and Gelfand–Levitan theory. The result shows that the uniqueness in simultaneous identification can be achieved, provided the initial values non-orthogonality to the eigenfunction of differential operators, which incorporates only one diffusion coefficient rather than scenarios involving two diffusion coefficients.</description><subject>Fractional inverse problem</subject><subject>Inverse coefficient problem</subject><subject>Simultaneous uniqueness</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KxDAQxoMouK4-gLe8QNekSdoGT7L4DwQP6jlk0wnO0qZuki548dltXcGbp2Fmvu9j5kfIJWcrznh1tV3ZvluVrJRTr7nUR2TBm1oUSqrymCxYo0WhK6VPyVlKW8aY0KJZkK8X7Mcu2wDDmOgYcDdCgJSoHyLN70Bb9H5MOATqBvAeHULI1IaWYsCMtqN7241AsZ3mOO1tnsUYqKUZeyh8tG4eTcq_LNiNP7pzcuJtl-Dity7J293t6_qheHq-f1zfPBWulDoXvoYapPRac6GlcqBZDUoBNN4KzxxXjZB1ayUvlWo3XriGQ11VEpj3G-HEkvBDrotDShG8-YjY2_hpODMzQLM1E0AzAzQHgJPn-uCB6bA9QjRpft5BixFcNu2A_7i_AVPifM8</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Jing, Xiaohua</creator><creator>Jia, Junxiong</creator><creator>Song, Xueli</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202410</creationdate><title>Simultaneous uniqueness for the diffusion coefficient and initial value identification in a time-fractional diffusion equation</title><author>Jing, Xiaohua ; Jia, Junxiong ; Song, Xueli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-f7e7e44f9913945ce907e55ee8fa3f0c158347da41255dbf3c81e7664e0ffb3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fractional inverse problem</topic><topic>Inverse coefficient problem</topic><topic>Simultaneous uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Xiaohua</creatorcontrib><creatorcontrib>Jia, Junxiong</creatorcontrib><creatorcontrib>Song, Xueli</creatorcontrib><collection>CrossRef</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Xiaohua</au><au>Jia, Junxiong</au><au>Song, Xueli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous uniqueness for the diffusion coefficient and initial value identification in a time-fractional diffusion equation</atitle><jtitle>Applied mathematics letters</jtitle><date>2024-10</date><risdate>2024</risdate><volume>156</volume><spage>109149</spage><pages>109149-</pages><artnum>109149</artnum><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>This article investigates the uniqueness of simultaneously determining the diffusion coefficient and initial value in a time-fractional diffusion equation with derivative order α∈(0,1). By additional boundary measurements and a priori assumption on the diffusion coefficient, the uniqueness of the eigenvalues and an associated integral equation for the diffusion coefficient are firstly established. The proof is based on the Laplace transform and the expansion of eigenfunctions for the solution to the initial value/boundary value problem. Furthermore, by using these two results, the simultaneous uniqueness in determining the diffusion coefficient and initial value is demonstrated from the Liouville transform and Gelfand–Levitan theory. The result shows that the uniqueness in simultaneous identification can be achieved, provided the initial values non-orthogonality to the eigenfunction of differential operators, which incorporates only one diffusion coefficient rather than scenarios involving two diffusion coefficients.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2024.109149</doi></addata></record>
fulltext fulltext
identifier ISSN: 0893-9659
ispartof Applied mathematics letters, 2024-10, Vol.156, p.109149, Article 109149
issn 0893-9659
1873-5452
language eng
recordid cdi_crossref_primary_10_1016_j_aml_2024_109149
source ScienceDirect Freedom Collection 2022-2024
subjects Fractional inverse problem
Inverse coefficient problem
Simultaneous uniqueness
title Simultaneous uniqueness for the diffusion coefficient and initial value identification in a time-fractional diffusion equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20uniqueness%20for%20the%20diffusion%20coefficient%20and%20initial%20value%20identification%20in%20a%20time-fractional%20diffusion%20equation&rft.jtitle=Applied%20mathematics%20letters&rft.au=Jing,%20Xiaohua&rft.date=2024-10&rft.volume=156&rft.spage=109149&rft.pages=109149-&rft.artnum=109149&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2024.109149&rft_dat=%3Celsevier_cross%3ES0893965924001691%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-f7e7e44f9913945ce907e55ee8fa3f0c158347da41255dbf3c81e7664e0ffb3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true