Loading…
Reinhardt cardinals and iterates of V
Assume ZF(j) and there is a Reinhardt cardinal, as witnessed by the elementary embedding j:V→V. We investigate the linear iterates (Nα,jα) of (V,j), and their relationship to (V,j), forcing and definability, including that for each infinite α, every set is set-generic over Nα, but Nα is not a set-gr...
Saved in:
Published in: | Annals of pure and applied logic 2022-02, Vol.173 (2), p.103056, Article 103056 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c251t-d9bfdaf2f341269e4369cf5fbdb05ceaaba2a911e97dc664855ebeb29c40268b3 |
container_end_page | |
container_issue | 2 |
container_start_page | 103056 |
container_title | Annals of pure and applied logic |
container_volume | 173 |
creator | Schlutzenberg, Farmer |
description | Assume ZF(j) and there is a Reinhardt cardinal, as witnessed by the elementary embedding j:V→V. We investigate the linear iterates (Nα,jα) of (V,j), and their relationship to (V,j), forcing and definability, including that for each infinite α, every set is set-generic over Nα, but Nα is not a set-ground.
Assume Morse-Kelley set theory without the Axiom of Choice. We prove that the existence of super Reinhardt cardinals and total Reinhardt cardinals is not affected by small forcing. And if V[G] has a set of ordinals which is not in V, then V[G] has no elementary embedding j:V[G]→M⊆V (even allowing M to be illfounded). |
doi_str_mv | 10.1016/j.apal.2021.103056 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_apal_2021_103056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168007221001147</els_id><sourcerecordid>S0168007221001147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-d9bfdaf2f341269e4369cf5fbdb05ceaaba2a911e97dc664855ebeb29c40268b3</originalsourceid><addsrcrecordid>eNp9j01LxDAQhnNQcF39A5568dg6SZu0BS-y-AULgqjXMEkmmLK2S1IE_70p9exlXpiXZ5iHsSsOFQeuboYKj3ioBAieFzVIdcI2uehKgFacsfOUBgCQTVtv2PUrhfETo5sLm2cY8ZAKHF0RZoo4UyomX3xcsFOfC7r8yy17f7h_2z2V-5fH593dvrRC8rl0vfEOvfB1w4XqqalVb730xhmQlhANCuw5p751Vqmmk5IMGdHbBoTqTL1lYr1r45RSJK-PMXxh_NEc9CKnB73I6UVOr3IZul0hyp99B4o62UCjJRci2Vm7KfyH_wI80Vm6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reinhardt cardinals and iterates of V</title><source>ScienceDirect Freedom Collection</source><creator>Schlutzenberg, Farmer</creator><creatorcontrib>Schlutzenberg, Farmer</creatorcontrib><description>Assume ZF(j) and there is a Reinhardt cardinal, as witnessed by the elementary embedding j:V→V. We investigate the linear iterates (Nα,jα) of (V,j), and their relationship to (V,j), forcing and definability, including that for each infinite α, every set is set-generic over Nα, but Nα is not a set-ground.
Assume Morse-Kelley set theory without the Axiom of Choice. We prove that the existence of super Reinhardt cardinals and total Reinhardt cardinals is not affected by small forcing. And if V[G] has a set of ordinals which is not in V, then V[G] has no elementary embedding j:V[G]→M⊆V (even allowing M to be illfounded).</description><identifier>ISSN: 0168-0072</identifier><identifier>DOI: 10.1016/j.apal.2021.103056</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Axiom of choice ; Definability ; Forcing ; HOD ; Iterate ; Reinhardt cardinal</subject><ispartof>Annals of pure and applied logic, 2022-02, Vol.173 (2), p.103056, Article 103056</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-d9bfdaf2f341269e4369cf5fbdb05ceaaba2a911e97dc664855ebeb29c40268b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Schlutzenberg, Farmer</creatorcontrib><title>Reinhardt cardinals and iterates of V</title><title>Annals of pure and applied logic</title><description>Assume ZF(j) and there is a Reinhardt cardinal, as witnessed by the elementary embedding j:V→V. We investigate the linear iterates (Nα,jα) of (V,j), and their relationship to (V,j), forcing and definability, including that for each infinite α, every set is set-generic over Nα, but Nα is not a set-ground.
Assume Morse-Kelley set theory without the Axiom of Choice. We prove that the existence of super Reinhardt cardinals and total Reinhardt cardinals is not affected by small forcing. And if V[G] has a set of ordinals which is not in V, then V[G] has no elementary embedding j:V[G]→M⊆V (even allowing M to be illfounded).</description><subject>Axiom of choice</subject><subject>Definability</subject><subject>Forcing</subject><subject>HOD</subject><subject>Iterate</subject><subject>Reinhardt cardinal</subject><issn>0168-0072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAQhnNQcF39A5568dg6SZu0BS-y-AULgqjXMEkmmLK2S1IE_70p9exlXpiXZ5iHsSsOFQeuboYKj3ioBAieFzVIdcI2uehKgFacsfOUBgCQTVtv2PUrhfETo5sLm2cY8ZAKHF0RZoo4UyomX3xcsFOfC7r8yy17f7h_2z2V-5fH593dvrRC8rl0vfEOvfB1w4XqqalVb730xhmQlhANCuw5p751Vqmmk5IMGdHbBoTqTL1lYr1r45RSJK-PMXxh_NEc9CKnB73I6UVOr3IZul0hyp99B4o62UCjJRci2Vm7KfyH_wI80Vm6</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Schlutzenberg, Farmer</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202202</creationdate><title>Reinhardt cardinals and iterates of V</title><author>Schlutzenberg, Farmer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-d9bfdaf2f341269e4369cf5fbdb05ceaaba2a911e97dc664855ebeb29c40268b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Axiom of choice</topic><topic>Definability</topic><topic>Forcing</topic><topic>HOD</topic><topic>Iterate</topic><topic>Reinhardt cardinal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlutzenberg, Farmer</creatorcontrib><collection>CrossRef</collection><jtitle>Annals of pure and applied logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlutzenberg, Farmer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinhardt cardinals and iterates of V</atitle><jtitle>Annals of pure and applied logic</jtitle><date>2022-02</date><risdate>2022</risdate><volume>173</volume><issue>2</issue><spage>103056</spage><pages>103056-</pages><artnum>103056</artnum><issn>0168-0072</issn><abstract>Assume ZF(j) and there is a Reinhardt cardinal, as witnessed by the elementary embedding j:V→V. We investigate the linear iterates (Nα,jα) of (V,j), and their relationship to (V,j), forcing and definability, including that for each infinite α, every set is set-generic over Nα, but Nα is not a set-ground.
Assume Morse-Kelley set theory without the Axiom of Choice. We prove that the existence of super Reinhardt cardinals and total Reinhardt cardinals is not affected by small forcing. And if V[G] has a set of ordinals which is not in V, then V[G] has no elementary embedding j:V[G]→M⊆V (even allowing M to be illfounded).</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apal.2021.103056</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-0072 |
ispartof | Annals of pure and applied logic, 2022-02, Vol.173 (2), p.103056, Article 103056 |
issn | 0168-0072 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_apal_2021_103056 |
source | ScienceDirect Freedom Collection |
subjects | Axiom of choice Definability Forcing HOD Iterate Reinhardt cardinal |
title | Reinhardt cardinals and iterates of V |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T11%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinhardt%20cardinals%20and%20iterates%20of%20V&rft.jtitle=Annals%20of%20pure%20and%20applied%20logic&rft.au=Schlutzenberg,%20Farmer&rft.date=2022-02&rft.volume=173&rft.issue=2&rft.spage=103056&rft.pages=103056-&rft.artnum=103056&rft.issn=0168-0072&rft_id=info:doi/10.1016/j.apal.2021.103056&rft_dat=%3Celsevier_cross%3ES0168007221001147%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c251t-d9bfdaf2f341269e4369cf5fbdb05ceaaba2a911e97dc664855ebeb29c40268b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |