Loading…
Heat removal efficiency of stratum ventilation for air-side modulation
•Heat removal efficiency (HRE) model is developed and validated.•HRE model is in function of supply airflow rate, supply air temperature and cooling load.•HRE model is applicable to stratum ventilation and displacement ventilation.•Errors of HRE model for 38 cases are generally within ±5%.•HRE model...
Saved in:
Published in: | Applied energy 2019-03, Vol.238, p.1237-1249 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Heat removal efficiency (HRE) model is developed and validated.•HRE model is in function of supply airflow rate, supply air temperature and cooling load.•HRE model is applicable to stratum ventilation and displacement ventilation.•Errors of HRE model for 38 cases are generally within ±5%.•HRE model based air-side modulation for energy saving and thermal comfort is proposed.
Stratum ventilation has significant thermal non-uniformity between the occupied and upper zones. Although the non-uniformity benefits indoor air quality and energy efficiency, it increases complexities and difficulties in the air-side modulation. In this study, a heat removal efficiency (HRE) model is first established and validated, and then used for the air-side modulation. The HRE model proposed is a function of supply air temperature, supply airflow rate and cooling load. The HRE model proposed has been proven to be applicable to stratum ventilation and displacement ventilation for different room geometries and air terminal configurations, with errors generally within ±5% and a mean absolute error less than 4% for thirty-three experimental cases and five simulated cases. Investigations into the air-side modulation with the proposed HRE model reveal that for both the typical stratum-ventilated classroom and office, the variable-air-volume system can serve a wider range of cooling load than the constant-air-volume system. The assumption of a constant HRE used in the conventional method could lead to errors in the room temperature prediction up to ±1.3 °C, thus the proposed HRE model is important to the air-side modulation for thermal comfort. An air-side modulation method is proposed based on the HRE model to maximize the HRE for improving energy efficiency while maintaining thermal comfort. Results show that the HRE model based air-side modulation can improve the energy efficiency of stratum ventilation up to 67.3%. The HRE model based air-side modulation is also promising for displacement ventilation. |
---|---|
ISSN: | 0306-2619 1872-9118 |
DOI: | 10.1016/j.apenergy.2019.01.148 |