Loading…

A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method

This work concerns with self-reinforced composite phase change materials (CPCMs) for thermal energy storage (TES) to deal with the mismatch between energy generation and demand under deep renewable energy penetration scenarios to combat climate change challenges. It focuses specifically on the cost-...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy 2021-12, Vol.303, p.117591, Article 117591
Main Authors: Jiang, Zhu, Navarro Rivero, Maria Elena, Liu, Xianglei, She, Xiaohui, Xuan, Yimin, Ding, Yulong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-d5a841c2d7f6d1293837b16a044088cb475b5d4915bb9dba1b161b9615c6f7af3
cites cdi_FETCH-LOGICAL-c312t-d5a841c2d7f6d1293837b16a044088cb475b5d4915bb9dba1b161b9615c6f7af3
container_end_page
container_issue
container_start_page 117591
container_title Applied energy
container_volume 303
creator Jiang, Zhu
Navarro Rivero, Maria Elena
Liu, Xianglei
She, Xiaohui
Xuan, Yimin
Ding, Yulong
description This work concerns with self-reinforced composite phase change materials (CPCMs) for thermal energy storage (TES) to deal with the mismatch between energy generation and demand under deep renewable energy penetration scenarios to combat climate change challenges. It focuses specifically on the cost-effective manufacturing of CPCMs at a large scale, aimed to promote the deployment of CPCMs. For this, a novel high-density-polyethylene (HDPE)/pentaerythritol/graphite CPCM is formulated and manufactured by using a continuous hot-melt extrusion method for the first time. A correlation between the manufacturing parameters and the CPCM structural properties is established. An optimal extrusion rate and the processing temperature are found for producing a dense and homogeneous structure. Thermal characterization of the fabricated CPCM shows a high energy density of 426.17 kJ/kg in a working temperature range between 100 °C and 200 °C. The CPCM also has an improved thermal conductivity of 0.42 w/(m·K), which is 26.02% higher compared with the pure HDPE. A good stability of the fabricated CPCM is observed through 100 times of thermal cycling, which shows a small change of the latent heat. The throughput of the formulated CPCM on a lab-based extruder can reach 2.09 kg/h, and an economic analysis of the produced CPCM indicates a great potential for commercialisation.
doi_str_mv 10.1016/j.apenergy.2021.117591
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_apenergy_2021_117591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261921009661</els_id><sourcerecordid>S0306261921009661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-d5a841c2d7f6d1293837b16a044088cb475b5d4915bb9dba1b161b9615c6f7af3</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhi0EEqVwBeQLpHjyzo4K8ZIqsYG1NbEnjaskjmwH6Em4LimFNatZ_I_59TF2DWIFAvKb3QpHGsht96tYxLACKLIKTtgCyiKOKoDylC1EIvIozqE6Zxfe74SYnbFYsK81H-w7dVzZfrTeBOJji564anHYEu8xkDPY8cY63pM2U88D9SM5DJMjHlpy_SwfB3AfrMOf2DA1qA4WzT9MaDlyr7DDupur7RDMMNnJ89aGqKcucPoMbvLGDvOT0Fp9yc4a7Dxd_d4le3u4f717ijYvj893602kEohDpDMsU1CxLppcQ1wlZVLUkKNIU1GWqk6LrM50WkFW15WuEWYR6iqHTOVNgU2yZPmxVznrvaNGjs706PYShDzglTv5h1ce8Moj3jl4ewzSvO7dkJNeGRrUjMiRClJb81_FNyUEi9c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method</title><source>ScienceDirect Freedom Collection</source><creator>Jiang, Zhu ; Navarro Rivero, Maria Elena ; Liu, Xianglei ; She, Xiaohui ; Xuan, Yimin ; Ding, Yulong</creator><creatorcontrib>Jiang, Zhu ; Navarro Rivero, Maria Elena ; Liu, Xianglei ; She, Xiaohui ; Xuan, Yimin ; Ding, Yulong</creatorcontrib><description>This work concerns with self-reinforced composite phase change materials (CPCMs) for thermal energy storage (TES) to deal with the mismatch between energy generation and demand under deep renewable energy penetration scenarios to combat climate change challenges. It focuses specifically on the cost-effective manufacturing of CPCMs at a large scale, aimed to promote the deployment of CPCMs. For this, a novel high-density-polyethylene (HDPE)/pentaerythritol/graphite CPCM is formulated and manufactured by using a continuous hot-melt extrusion method for the first time. A correlation between the manufacturing parameters and the CPCM structural properties is established. An optimal extrusion rate and the processing temperature are found for producing a dense and homogeneous structure. Thermal characterization of the fabricated CPCM shows a high energy density of 426.17 kJ/kg in a working temperature range between 100 °C and 200 °C. The CPCM also has an improved thermal conductivity of 0.42 w/(m·K), which is 26.02% higher compared with the pure HDPE. A good stability of the fabricated CPCM is observed through 100 times of thermal cycling, which shows a small change of the latent heat. The throughput of the formulated CPCM on a lab-based extruder can reach 2.09 kg/h, and an economic analysis of the produced CPCM indicates a great potential for commercialisation.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2021.117591</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Composite phase change material (CPCM) ; Continuous process ; Hot-melt extrusion method ; Large scale manufacturing ; Latent heat thermal energy storage (LHTES)</subject><ispartof>Applied energy, 2021-12, Vol.303, p.117591, Article 117591</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-d5a841c2d7f6d1293837b16a044088cb475b5d4915bb9dba1b161b9615c6f7af3</citedby><cites>FETCH-LOGICAL-c312t-d5a841c2d7f6d1293837b16a044088cb475b5d4915bb9dba1b161b9615c6f7af3</cites><orcidid>0000-0001-5647-5206 ; 0000-0001-7568-3190 ; 0000-0001-7663-1798 ; 0000-0001-8490-5349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Jiang, Zhu</creatorcontrib><creatorcontrib>Navarro Rivero, Maria Elena</creatorcontrib><creatorcontrib>Liu, Xianglei</creatorcontrib><creatorcontrib>She, Xiaohui</creatorcontrib><creatorcontrib>Xuan, Yimin</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><title>A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method</title><title>Applied energy</title><description>This work concerns with self-reinforced composite phase change materials (CPCMs) for thermal energy storage (TES) to deal with the mismatch between energy generation and demand under deep renewable energy penetration scenarios to combat climate change challenges. It focuses specifically on the cost-effective manufacturing of CPCMs at a large scale, aimed to promote the deployment of CPCMs. For this, a novel high-density-polyethylene (HDPE)/pentaerythritol/graphite CPCM is formulated and manufactured by using a continuous hot-melt extrusion method for the first time. A correlation between the manufacturing parameters and the CPCM structural properties is established. An optimal extrusion rate and the processing temperature are found for producing a dense and homogeneous structure. Thermal characterization of the fabricated CPCM shows a high energy density of 426.17 kJ/kg in a working temperature range between 100 °C and 200 °C. The CPCM also has an improved thermal conductivity of 0.42 w/(m·K), which is 26.02% higher compared with the pure HDPE. A good stability of the fabricated CPCM is observed through 100 times of thermal cycling, which shows a small change of the latent heat. The throughput of the formulated CPCM on a lab-based extruder can reach 2.09 kg/h, and an economic analysis of the produced CPCM indicates a great potential for commercialisation.</description><subject>Composite phase change material (CPCM)</subject><subject>Continuous process</subject><subject>Hot-melt extrusion method</subject><subject>Large scale manufacturing</subject><subject>Latent heat thermal energy storage (LHTES)</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQhi0EEqVwBeQLpHjyzo4K8ZIqsYG1NbEnjaskjmwH6Em4LimFNatZ_I_59TF2DWIFAvKb3QpHGsht96tYxLACKLIKTtgCyiKOKoDylC1EIvIozqE6Zxfe74SYnbFYsK81H-w7dVzZfrTeBOJji564anHYEu8xkDPY8cY63pM2U88D9SM5DJMjHlpy_SwfB3AfrMOf2DA1qA4WzT9MaDlyr7DDupur7RDMMNnJ89aGqKcucPoMbvLGDvOT0Fp9yc4a7Dxd_d4le3u4f717ijYvj893602kEohDpDMsU1CxLppcQ1wlZVLUkKNIU1GWqk6LrM50WkFW15WuEWYR6iqHTOVNgU2yZPmxVznrvaNGjs706PYShDzglTv5h1ce8Moj3jl4ewzSvO7dkJNeGRrUjMiRClJb81_FNyUEi9c</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Jiang, Zhu</creator><creator>Navarro Rivero, Maria Elena</creator><creator>Liu, Xianglei</creator><creator>She, Xiaohui</creator><creator>Xuan, Yimin</creator><creator>Ding, Yulong</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5647-5206</orcidid><orcidid>https://orcid.org/0000-0001-7568-3190</orcidid><orcidid>https://orcid.org/0000-0001-7663-1798</orcidid><orcidid>https://orcid.org/0000-0001-8490-5349</orcidid></search><sort><creationdate>20211201</creationdate><title>A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method</title><author>Jiang, Zhu ; Navarro Rivero, Maria Elena ; Liu, Xianglei ; She, Xiaohui ; Xuan, Yimin ; Ding, Yulong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-d5a841c2d7f6d1293837b16a044088cb475b5d4915bb9dba1b161b9615c6f7af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Composite phase change material (CPCM)</topic><topic>Continuous process</topic><topic>Hot-melt extrusion method</topic><topic>Large scale manufacturing</topic><topic>Latent heat thermal energy storage (LHTES)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Zhu</creatorcontrib><creatorcontrib>Navarro Rivero, Maria Elena</creatorcontrib><creatorcontrib>Liu, Xianglei</creatorcontrib><creatorcontrib>She, Xiaohui</creatorcontrib><creatorcontrib>Xuan, Yimin</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><collection>CrossRef</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Zhu</au><au>Navarro Rivero, Maria Elena</au><au>Liu, Xianglei</au><au>She, Xiaohui</au><au>Xuan, Yimin</au><au>Ding, Yulong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method</atitle><jtitle>Applied energy</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>303</volume><spage>117591</spage><pages>117591-</pages><artnum>117591</artnum><issn>0306-2619</issn><eissn>1872-9118</eissn><abstract>This work concerns with self-reinforced composite phase change materials (CPCMs) for thermal energy storage (TES) to deal with the mismatch between energy generation and demand under deep renewable energy penetration scenarios to combat climate change challenges. It focuses specifically on the cost-effective manufacturing of CPCMs at a large scale, aimed to promote the deployment of CPCMs. For this, a novel high-density-polyethylene (HDPE)/pentaerythritol/graphite CPCM is formulated and manufactured by using a continuous hot-melt extrusion method for the first time. A correlation between the manufacturing parameters and the CPCM structural properties is established. An optimal extrusion rate and the processing temperature are found for producing a dense and homogeneous structure. Thermal characterization of the fabricated CPCM shows a high energy density of 426.17 kJ/kg in a working temperature range between 100 °C and 200 °C. The CPCM also has an improved thermal conductivity of 0.42 w/(m·K), which is 26.02% higher compared with the pure HDPE. A good stability of the fabricated CPCM is observed through 100 times of thermal cycling, which shows a small change of the latent heat. The throughput of the formulated CPCM on a lab-based extruder can reach 2.09 kg/h, and an economic analysis of the produced CPCM indicates a great potential for commercialisation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2021.117591</doi><orcidid>https://orcid.org/0000-0001-5647-5206</orcidid><orcidid>https://orcid.org/0000-0001-7568-3190</orcidid><orcidid>https://orcid.org/0000-0001-7663-1798</orcidid><orcidid>https://orcid.org/0000-0001-8490-5349</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2021-12, Vol.303, p.117591, Article 117591
issn 0306-2619
1872-9118
language eng
recordid cdi_crossref_primary_10_1016_j_apenergy_2021_117591
source ScienceDirect Freedom Collection
subjects Composite phase change material (CPCM)
Continuous process
Hot-melt extrusion method
Large scale manufacturing
Latent heat thermal energy storage (LHTES)
title A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20composite%20phase%20change%20material%20for%20medium%20temperature%20thermal%20energy%20storage%20manufactured%20with%20a%20scalable%20continuous%20hot-melt%20extrusion%20method&rft.jtitle=Applied%20energy&rft.au=Jiang,%20Zhu&rft.date=2021-12-01&rft.volume=303&rft.spage=117591&rft.pages=117591-&rft.artnum=117591&rft.issn=0306-2619&rft.eissn=1872-9118&rft_id=info:doi/10.1016/j.apenergy.2021.117591&rft_dat=%3Celsevier_cross%3ES0306261921009661%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-d5a841c2d7f6d1293837b16a044088cb475b5d4915bb9dba1b161b9615c6f7af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true