Loading…
A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method
This work concerns with self-reinforced composite phase change materials (CPCMs) for thermal energy storage (TES) to deal with the mismatch between energy generation and demand under deep renewable energy penetration scenarios to combat climate change challenges. It focuses specifically on the cost-...
Saved in:
Published in: | Applied energy 2021-12, Vol.303, p.117591, Article 117591 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c312t-d5a841c2d7f6d1293837b16a044088cb475b5d4915bb9dba1b161b9615c6f7af3 |
---|---|
cites | cdi_FETCH-LOGICAL-c312t-d5a841c2d7f6d1293837b16a044088cb475b5d4915bb9dba1b161b9615c6f7af3 |
container_end_page | |
container_issue | |
container_start_page | 117591 |
container_title | Applied energy |
container_volume | 303 |
creator | Jiang, Zhu Navarro Rivero, Maria Elena Liu, Xianglei She, Xiaohui Xuan, Yimin Ding, Yulong |
description | This work concerns with self-reinforced composite phase change materials (CPCMs) for thermal energy storage (TES) to deal with the mismatch between energy generation and demand under deep renewable energy penetration scenarios to combat climate change challenges. It focuses specifically on the cost-effective manufacturing of CPCMs at a large scale, aimed to promote the deployment of CPCMs. For this, a novel high-density-polyethylene (HDPE)/pentaerythritol/graphite CPCM is formulated and manufactured by using a continuous hot-melt extrusion method for the first time. A correlation between the manufacturing parameters and the CPCM structural properties is established. An optimal extrusion rate and the processing temperature are found for producing a dense and homogeneous structure. Thermal characterization of the fabricated CPCM shows a high energy density of 426.17 kJ/kg in a working temperature range between 100 °C and 200 °C. The CPCM also has an improved thermal conductivity of 0.42 w/(m·K), which is 26.02% higher compared with the pure HDPE. A good stability of the fabricated CPCM is observed through 100 times of thermal cycling, which shows a small change of the latent heat. The throughput of the formulated CPCM on a lab-based extruder can reach 2.09 kg/h, and an economic analysis of the produced CPCM indicates a great potential for commercialisation. |
doi_str_mv | 10.1016/j.apenergy.2021.117591 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_apenergy_2021_117591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261921009661</els_id><sourcerecordid>S0306261921009661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-d5a841c2d7f6d1293837b16a044088cb475b5d4915bb9dba1b161b9615c6f7af3</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhi0EEqVwBeQLpHjyzo4K8ZIqsYG1NbEnjaskjmwH6Em4LimFNatZ_I_59TF2DWIFAvKb3QpHGsht96tYxLACKLIKTtgCyiKOKoDylC1EIvIozqE6Zxfe74SYnbFYsK81H-w7dVzZfrTeBOJji564anHYEu8xkDPY8cY63pM2U88D9SM5DJMjHlpy_SwfB3AfrMOf2DA1qA4WzT9MaDlyr7DDupur7RDMMNnJ89aGqKcucPoMbvLGDvOT0Fp9yc4a7Dxd_d4le3u4f717ijYvj893602kEohDpDMsU1CxLppcQ1wlZVLUkKNIU1GWqk6LrM50WkFW15WuEWYR6iqHTOVNgU2yZPmxVznrvaNGjs706PYShDzglTv5h1ce8Moj3jl4ewzSvO7dkJNeGRrUjMiRClJb81_FNyUEi9c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method</title><source>ScienceDirect Freedom Collection</source><creator>Jiang, Zhu ; Navarro Rivero, Maria Elena ; Liu, Xianglei ; She, Xiaohui ; Xuan, Yimin ; Ding, Yulong</creator><creatorcontrib>Jiang, Zhu ; Navarro Rivero, Maria Elena ; Liu, Xianglei ; She, Xiaohui ; Xuan, Yimin ; Ding, Yulong</creatorcontrib><description>This work concerns with self-reinforced composite phase change materials (CPCMs) for thermal energy storage (TES) to deal with the mismatch between energy generation and demand under deep renewable energy penetration scenarios to combat climate change challenges. It focuses specifically on the cost-effective manufacturing of CPCMs at a large scale, aimed to promote the deployment of CPCMs. For this, a novel high-density-polyethylene (HDPE)/pentaerythritol/graphite CPCM is formulated and manufactured by using a continuous hot-melt extrusion method for the first time. A correlation between the manufacturing parameters and the CPCM structural properties is established. An optimal extrusion rate and the processing temperature are found for producing a dense and homogeneous structure. Thermal characterization of the fabricated CPCM shows a high energy density of 426.17 kJ/kg in a working temperature range between 100 °C and 200 °C. The CPCM also has an improved thermal conductivity of 0.42 w/(m·K), which is 26.02% higher compared with the pure HDPE. A good stability of the fabricated CPCM is observed through 100 times of thermal cycling, which shows a small change of the latent heat. The throughput of the formulated CPCM on a lab-based extruder can reach 2.09 kg/h, and an economic analysis of the produced CPCM indicates a great potential for commercialisation.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2021.117591</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Composite phase change material (CPCM) ; Continuous process ; Hot-melt extrusion method ; Large scale manufacturing ; Latent heat thermal energy storage (LHTES)</subject><ispartof>Applied energy, 2021-12, Vol.303, p.117591, Article 117591</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-d5a841c2d7f6d1293837b16a044088cb475b5d4915bb9dba1b161b9615c6f7af3</citedby><cites>FETCH-LOGICAL-c312t-d5a841c2d7f6d1293837b16a044088cb475b5d4915bb9dba1b161b9615c6f7af3</cites><orcidid>0000-0001-5647-5206 ; 0000-0001-7568-3190 ; 0000-0001-7663-1798 ; 0000-0001-8490-5349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Jiang, Zhu</creatorcontrib><creatorcontrib>Navarro Rivero, Maria Elena</creatorcontrib><creatorcontrib>Liu, Xianglei</creatorcontrib><creatorcontrib>She, Xiaohui</creatorcontrib><creatorcontrib>Xuan, Yimin</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><title>A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method</title><title>Applied energy</title><description>This work concerns with self-reinforced composite phase change materials (CPCMs) for thermal energy storage (TES) to deal with the mismatch between energy generation and demand under deep renewable energy penetration scenarios to combat climate change challenges. It focuses specifically on the cost-effective manufacturing of CPCMs at a large scale, aimed to promote the deployment of CPCMs. For this, a novel high-density-polyethylene (HDPE)/pentaerythritol/graphite CPCM is formulated and manufactured by using a continuous hot-melt extrusion method for the first time. A correlation between the manufacturing parameters and the CPCM structural properties is established. An optimal extrusion rate and the processing temperature are found for producing a dense and homogeneous structure. Thermal characterization of the fabricated CPCM shows a high energy density of 426.17 kJ/kg in a working temperature range between 100 °C and 200 °C. The CPCM also has an improved thermal conductivity of 0.42 w/(m·K), which is 26.02% higher compared with the pure HDPE. A good stability of the fabricated CPCM is observed through 100 times of thermal cycling, which shows a small change of the latent heat. The throughput of the formulated CPCM on a lab-based extruder can reach 2.09 kg/h, and an economic analysis of the produced CPCM indicates a great potential for commercialisation.</description><subject>Composite phase change material (CPCM)</subject><subject>Continuous process</subject><subject>Hot-melt extrusion method</subject><subject>Large scale manufacturing</subject><subject>Latent heat thermal energy storage (LHTES)</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQhi0EEqVwBeQLpHjyzo4K8ZIqsYG1NbEnjaskjmwH6Em4LimFNatZ_I_59TF2DWIFAvKb3QpHGsht96tYxLACKLIKTtgCyiKOKoDylC1EIvIozqE6Zxfe74SYnbFYsK81H-w7dVzZfrTeBOJji564anHYEu8xkDPY8cY63pM2U88D9SM5DJMjHlpy_SwfB3AfrMOf2DA1qA4WzT9MaDlyr7DDupur7RDMMNnJ89aGqKcucPoMbvLGDvOT0Fp9yc4a7Dxd_d4le3u4f717ijYvj893602kEohDpDMsU1CxLppcQ1wlZVLUkKNIU1GWqk6LrM50WkFW15WuEWYR6iqHTOVNgU2yZPmxVznrvaNGjs706PYShDzglTv5h1ce8Moj3jl4ewzSvO7dkJNeGRrUjMiRClJb81_FNyUEi9c</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Jiang, Zhu</creator><creator>Navarro Rivero, Maria Elena</creator><creator>Liu, Xianglei</creator><creator>She, Xiaohui</creator><creator>Xuan, Yimin</creator><creator>Ding, Yulong</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5647-5206</orcidid><orcidid>https://orcid.org/0000-0001-7568-3190</orcidid><orcidid>https://orcid.org/0000-0001-7663-1798</orcidid><orcidid>https://orcid.org/0000-0001-8490-5349</orcidid></search><sort><creationdate>20211201</creationdate><title>A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method</title><author>Jiang, Zhu ; Navarro Rivero, Maria Elena ; Liu, Xianglei ; She, Xiaohui ; Xuan, Yimin ; Ding, Yulong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-d5a841c2d7f6d1293837b16a044088cb475b5d4915bb9dba1b161b9615c6f7af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Composite phase change material (CPCM)</topic><topic>Continuous process</topic><topic>Hot-melt extrusion method</topic><topic>Large scale manufacturing</topic><topic>Latent heat thermal energy storage (LHTES)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Zhu</creatorcontrib><creatorcontrib>Navarro Rivero, Maria Elena</creatorcontrib><creatorcontrib>Liu, Xianglei</creatorcontrib><creatorcontrib>She, Xiaohui</creatorcontrib><creatorcontrib>Xuan, Yimin</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><collection>CrossRef</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Zhu</au><au>Navarro Rivero, Maria Elena</au><au>Liu, Xianglei</au><au>She, Xiaohui</au><au>Xuan, Yimin</au><au>Ding, Yulong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method</atitle><jtitle>Applied energy</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>303</volume><spage>117591</spage><pages>117591-</pages><artnum>117591</artnum><issn>0306-2619</issn><eissn>1872-9118</eissn><abstract>This work concerns with self-reinforced composite phase change materials (CPCMs) for thermal energy storage (TES) to deal with the mismatch between energy generation and demand under deep renewable energy penetration scenarios to combat climate change challenges. It focuses specifically on the cost-effective manufacturing of CPCMs at a large scale, aimed to promote the deployment of CPCMs. For this, a novel high-density-polyethylene (HDPE)/pentaerythritol/graphite CPCM is formulated and manufactured by using a continuous hot-melt extrusion method for the first time. A correlation between the manufacturing parameters and the CPCM structural properties is established. An optimal extrusion rate and the processing temperature are found for producing a dense and homogeneous structure. Thermal characterization of the fabricated CPCM shows a high energy density of 426.17 kJ/kg in a working temperature range between 100 °C and 200 °C. The CPCM also has an improved thermal conductivity of 0.42 w/(m·K), which is 26.02% higher compared with the pure HDPE. A good stability of the fabricated CPCM is observed through 100 times of thermal cycling, which shows a small change of the latent heat. The throughput of the formulated CPCM on a lab-based extruder can reach 2.09 kg/h, and an economic analysis of the produced CPCM indicates a great potential for commercialisation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2021.117591</doi><orcidid>https://orcid.org/0000-0001-5647-5206</orcidid><orcidid>https://orcid.org/0000-0001-7568-3190</orcidid><orcidid>https://orcid.org/0000-0001-7663-1798</orcidid><orcidid>https://orcid.org/0000-0001-8490-5349</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-2619 |
ispartof | Applied energy, 2021-12, Vol.303, p.117591, Article 117591 |
issn | 0306-2619 1872-9118 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_apenergy_2021_117591 |
source | ScienceDirect Freedom Collection |
subjects | Composite phase change material (CPCM) Continuous process Hot-melt extrusion method Large scale manufacturing Latent heat thermal energy storage (LHTES) |
title | A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20composite%20phase%20change%20material%20for%20medium%20temperature%20thermal%20energy%20storage%20manufactured%20with%20a%20scalable%20continuous%20hot-melt%20extrusion%20method&rft.jtitle=Applied%20energy&rft.au=Jiang,%20Zhu&rft.date=2021-12-01&rft.volume=303&rft.spage=117591&rft.pages=117591-&rft.artnum=117591&rft.issn=0306-2619&rft.eissn=1872-9118&rft_id=info:doi/10.1016/j.apenergy.2021.117591&rft_dat=%3Celsevier_cross%3ES0306261921009661%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-d5a841c2d7f6d1293837b16a044088cb475b5d4915bb9dba1b161b9615c6f7af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |