Loading…
Optimal use of renewable energy technologies during building schematic design phase
An increasing number of federal and state regulations and financial incentive programs have been enacted in recent years to promote renewable energy systems integration in new buildings. This requires designers to analyze the initial and lifecycle costs of feasible renewable energy systems in order...
Saved in:
Published in: | Applied energy 2024-01, Vol.353, p.122006, Article 122006 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An increasing number of federal and state regulations and financial incentive programs have been enacted in recent years to promote renewable energy systems integration in new buildings. This requires designers to analyze the initial and lifecycle costs of feasible renewable energy systems in order to optimize their integration in buildings during all design phases. The goal of this study is to support designers in generating optimal building schematic designs to maximize the integration and generation of onsite renewable energy. To accomplish this goal, this paper presents the development of a novel multi-objective optimization model that can be used during the schematic design phase to identify optimal building design decisions including dimensions, orientation, location on site, solid-to-void ratio, and the type and size of onsite renewable energy systems. The optimization objectives of the developed model focus on maximizing the generation of onsite renewable energy, maximizing savings-to-investment ratio of all integrated renewable energy, and minimizing both construction and renewable energy costs. An application example of optimizing the schematic design of a 6500 m2 building was analyzed to highlight the model original contributions and its novel capabilities. The results of this analysis highlight the original contributions of the developed model and its novel capabilities that can be used to maximize the generation of onsite renewable energy and its savings-to-investment ratio while minimizing building cost by optimizing building schematic design and renewable energy (RE) technology decisions.
•Optimizing building schematic design with renewable energy integration.•Maximizing RE generation, savings-to-investment ration, and minimizing bilding costs.•Complying with building design requirements and renewable energy constraints.•Optimal building design parameters and renewable energy technologies.•Analyzing the impact of design decisions on renewable energy and building costs. |
---|---|
ISSN: | 0306-2619 1872-9118 |
DOI: | 10.1016/j.apenergy.2023.122006 |